U.S. Department of Energy Office of Biological and Environmental Research

PI-Submitted Research Highlights for
Terrestrial Ecosystem Science Program

Under-utilized Soil Respiration Data Offer Novel Ways to Constrain and Improve Models

Ben Bond-Lamberty
Pacific Northwest National Laboratory

Highlight

Collected data on soil respiration (RS, center-right box in figure), the soil-to-atmosphere flow of CO2, allow researchers and modelers to better understand and model the other parts of the carbon cycle, including overall ecosystem carbon balance (NEE).

28 November 2016

Scientists argue for the use soil respiration data to improve understanding and modeling of ecosystem- to global-scale carbon fluxes.

The Science
Scientists have spent decades making measurements of soil respiration (RS), the flow of carbon dioxide from the soil to the atmosphere, but have only recently started to collect and synthesize this information. This invited Marschner Review argues that these data offer untapped potential to better understand the larger carbon cycle, and improve the performance of ecosystem- to global-scale computer models.

The Impact
Soil respiration data can bring a range of benefits to model development, particularly with larger databases and improved data-sharing protocols that make RS data more robust and broadly available to the research community. These efforts can help usher in new global syntheses, and spark progress in both measurement and modeling of biogeochemical cycles.

Summary
Model-data synthesis activities are increasingly important to understand the carbon and climate systems, but only rarely have used RS data. In an invited review, Department of Energy researchers at Pacific Northwest National Laboratory and co-authors argued that overlooking RS data is a mistake and identified three major challenges in interpreting and using RS data more extensively and creatively. First, when RS is compared to ecosystem respiration measured from eddy covariance towers, it is not uncommon to find the former to be larger, which is impossible. This is most likely because of difficulties in calculating ecosystem respiration, which provides an opportunity to utilize RS for eddy covariance quality control. Second, RS integrates below-ground heterotrophic and autotrophic activity (i.e., from plant- and animal-derived carbon), and opportunities exist to use the total RS flux for data assimilation and model benchmarking methods rather than less-certain partitioned fluxes. Finally, RS is generally measured at a very different resolution than that needed for comparison to eddy covariance or ecosystem- to global-scale models. Downscaling these fluxes to match the scale of RS, and improving RS upscaling techniques, will improve resolution challenges.

Contacts (BER PM)
Dan Stover & Jared DeForest
Terrestrial Ecosystem Science
Daniel.Stover@science.doe.gov, Jared.DeForest@science.doe.gov

(PI Contact)
Ben Bond-Lamberty
Pacific Northwest National Laboratory
bondlamberty@pnnl.gov  

Funding
ARD acknowledges support to UW from NSF Advances in Biological Informatics. Funding for AmeriFlux data resources was provided by the U.S. Department of Energy’s Office of Science. RV acknowledges support from the U.S. Department of Agriculture. Ben Bond-Lamberty was supported by the Office of Science of the U.S. Department of Energy as part of the Terrestrial Ecosystem Sciences Program. Katherine Todd-Brown was supported by the Linus Pauling Distinguished Postdoctoral Fellowship program, part of the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, a multi-program national laboratory operated by Battelle for the U.S. Department of Energy. JT was supported by the National Science Foundation and the University of Chicago and the MBL Lillie Research Innovation Award.

Publications
CL Phillips, B Bond-Lamberty, AR Desai, M Lavoie, D Risk, J Tang, K Todd-Brown, R Vargas, “The value of soil respiration measurements for interpreting and modeling terrestrial carbon cycling.” Plant and Soil, in press, (2016).
[DOI: 10.1007/s11104-016-3084-x]

Related Links
http://link.springer.com/article/10.1007%2Fs11104-016-3084-x

SFA at PNNL. Ben Bond-Lamberty was supported by the Office of Science of the U.S. Department of Energy as part of the Terrestrial Ecosystem Sciences Program. Katherine Todd-Brown was supported by the Linus Pauling Distinguished Postdoctoral Fellowship program, part of the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, a multi-program national laboratory operated by Battelle for the U.S. Department of Energy.

Search TES PI-Submitted Highlights

  • Search

Highlight Submission