BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

PI-Submitted Research Highlights for
Terrestrial Ecosystem Science Program

Soil Properties Explain Diversity of Moisture-Driven Microbial Respiration Response

Vanessa Bailey


21 May 2018

Linking microscale processes and macroscale fluxes using soil properties in a process-rich simulation.

The Science
Researchers from Pacific Northwest National Laboratory (PNNL) coupled fundamental soil properties with microbial physiology in a pore-scale simulation to predict how microbial respiration will vary under different moisture conditions.

The Impact
By modeling soil microbial respiration response to moisture using a more fundamental understanding of the system, scientists from PNNL can improve predictions of how different soils will respond biogeochemically to drought and inundation events like floods and extreme weather.

PNNL researchers have observed for a long time a “sweet spot” where soils respire the most carbon dioxide when they are not too wet or too dry. However, the location of this zone seemed to vary across different soil types and was difficult to predict.

In this study, scientists captured the underlying physical controls and microbial physiology in a computer simulation and generated a range of different respiration-moisture curves across different soil types. This demonstrated the distribution of these different moisture responses across soils and how those differences can be explained by specific soil properties. The findings will aid development of better models for soil biogeochemistry.

BER Program Manager
Dan Stover
Terrestrial Ecosystems Program, U.S. Department of Energy Office of Biological and Environmental Research

Principal Investigators
Vanessa Bailey
Pacific Northwest National Laboratory
Richland, WA 99354

Zhifeng Yan
Tianjin University

This research was supported by the National Key R&D Program of China and the Terrestrial Ecosystem Science (TES) program of the Office of Biological and Environmental Research (BER) within the U.S. Department of Energy (DOE) Office of Science.

Yan, Z., B. Bond-Lamberty, K. Todd-Brown, V. Bailey, S. Li, C. Liu, C Liu. “A moisture function of soil heterorophic respiration incorporating microscale processes.” Nature Communications 9(1), 2562 (2018). [DOI:10.1038/s41467-018-04971-6]

This research was supported by the National Key R&D Program of China and DOE’s Office of Science, Biological and Environmental Research (BER) Division through the Terrestrial Ecosystem Science (TES) program. 

Search TES PI-Submitted Highlights

  • Search

Highlight Submission