
pressures of about 1 MPa reaching the focal
zone (Fig. 3B).
The frequency andmagnitude of seismic events

reached a climax between May 2012 and Sep-
tember 2013, when more than 80% of events
occurred, including four Mw ≥ 4 earthquakes.
This period of elevated seismic activity followed
a rapid decline in injection at the west wells (Fig.
3B). Thus, the timing of seismicity may be deter-
mined by pore pressure diffusion to the depths of
the earthquakes. Additional contributions to the
stresses may also promote seismicity, such as from
the poroelastic stresses near the well that accom-
pany the decrease in injection. For an optimally
oriented strike-slip fault with the fault-normal di-
rection radial to the injection site, a sudden de-
cline in injection rate relaxes the compressive stress
(34). All of the seismic events discussed here oc-
curred on a fault with the fault-normal direction
oriented at N60°E, radial to the west injection wells.
Our coupled flow and poroelastic model allows

us to predict the future pore pressure distribution
after injection ends (Fig. 3A). As injection ends in
thewestwells by about 2016, themodel shows the
pressure decreasing approximately exponentially.
However, the decay rate is fastest in the most per-
meable formations and at the depths where in-
jection occurs. At the east wells, 10 years after
shut-off, the pore pressure remains close to its max-
imum level. For the west wells, only 5 years after a
hypothesized shut-off, pore pressure drops to less
than 10% of itsmaximumvalue. This observation
has direct implications for future injection oper-
ations and seismic hazard estimations. Changes
in the seismicity rate are a function of changes in
Coulomb stress and background stress (35). Our
study shows that the background stress is char-
acterized by a relaxation time that depends on
both the injectionhistoryandhydrogeological prop-
erties. Therefore, injection history at a given site
maymodify future estimates of the seismic hazard.
Better quantification of the evolution of the

stress and pore pressure in the crust is vital to
forecasting fault reactivation (9, 36). Despite im-
provements in seismic monitoring capacity and
the resulting decrease in the magnitude detection
threshold (37, 38), observations of the in situ pore
pressure and stress field remain elusive because
of the scarcity of deformation observations and
limited integration of those observations with
physical models. This work highlights the value
of monitoring surface deformation, in particular
by using advanced remote sensing techniques,
to understand the evolution of pore pressure and
stress at depth. The ability to measure crustal
stress evolution affords a proactive approach to
managing the hazard associated with fluid injec-
tion. Observation of the time-dependent stress
field permits the construction of temporally
variable statistical frameworks (34), which are
useful for earthquake operational forecasting
(39). The key to successful operational earthquake
hazard assessment is being able to continuously
update information about the probability of a
future earthquake, which can be achieved by using
data and models such as those presented in this
study. Geodeticmonitoring andmodeling schemes

are valuable components of efforts to mitigate
induced seismic hazard.
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CARBON CYCLE

Radiocarbon constraints imply
reduced carbon uptake by soils
during the 21st century
Yujie He,1* Susan E. Trumbore,2 Margaret S. Torn,3 Jennifer W. Harden,4,5

Lydia J. S. Vaughn,3 Steven D. Allison,1,6 James T. Randerson1

Soil is the largest terrestrial carbon reservoir andmay influence the sign andmagnitude of carbon
cycle–climate feedbacks. Many Earth systemmodels (ESMs) estimate a significant soil carbon sink
by2100, yet theunderlyingcarbondynamicsdetermining this responsehavenotbeensystematically
tested against observations.We used 14C data from 157 globally distributed soil profiles sampled to
1-meter depth to show that ESMs underestimated the mean age of soil carbon by a factor of more
than six (430 ± 50 years versus 3100 ± 1800 years). Consequently, ESMs overestimated the carbon
sequestration potential of soils by a factor of nearly two (40 ± 27%).These inconsistencies suggest
that ESMsmust better represent carbon stabilization processes and the turnover time of slow and
passive reservoirs when simulating future atmospheric carbon dioxide dynamics.

S
oil carbon is a dynamic reservoir that
may increase substantially in size during
the 21st century, as predicted by Earth sys-
tem models (ESMs), thereby influencing
the sign and magnitude of carbon cycle

feedbacks under climate change (1–4). Under a
high radiative forcing scenario (representative
concentration pathway 8.5), changes in soil car-
bon estimated by different models vary from a
loss of 20 Pg C to a gain of more than 360 Pg C
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(5). These models suggest that the global carbon
inventory in mineral soils may increase by 30%
or more over a time span of about two centuries.
The multimodel mean soil carbon accumulation
of 109 Pg C (5) represents about one decade of
global fossil fuel emissions at current rates and
5% of cumulative fossil emissions by 2100 for
this scenario (6). This soil carbon sink represents
a negative feedback on CO2 emissions and, if ro-
bust, would slow the rate of climate change.
Still, there are substantial uncertainties in the

soil carbon sinkprojected byESMs (5). Rapid rates
of carbon sequestration in ESMs contrast with
findings from CO2 and warming experiments
(7, 8), as well as multiple theoretical and obser-
vational constraints indicating slow (millennial)
rates of soil organic carbon (SOC) accrual and
turnover (9–14).Model uncertainty—asmeasured
by intermodel spread—is high for soil carbon turn-
over time (t) and exceeds the uncertainty esti-
mated for carbon uptake through gross primary
production (GPP) (15, 16).

In coupledmodel simulations, the relative sink
strength (i.e., percentage change in soil carbon)
depends on the responses of net primary produc-
tion (NPP) and soil carbondynamics to increasing
atmospheric CO2 concentrations and, to a lesser
extent, climate change (5). Elevated CO2 increases
photosynthesis and NPP, which results in greater
carbon inputs to soil pools with decadal or longer
residence times. Carbon sequestration in soils re-
duces the buildup of CO2 in the atmosphere (the
carbon-concentration feedback). On the other
hand, elevated CO2 also warms the climate, which
tends to accelerate soil carbon turnover and reduce
carbon storage (the carbon-climate feedback)
(17, 18). Although these feedbacks oppose one an-
other, the carbon-concentration feedback is more
than four times as high, on average, as the carbon-
climate feedback in current ESMs at the global
scale (3). Differences in the representation of ele-
vated CO2 versus climate effects on ecosystem
processes result in substantial variation in soil
carbon sequestration estimates (19) (table S1).
Without a strong carbon-concentration feed-

back, ESMs would likely project smaller gains or
larger losses of soil carbon over the 21st century.
Our aim was to constrain the magnitude of the
soil carbon–concentration feedbackwith soil radio-
carbon observations. Radiocarbon content pro-
vides information about soil carbon turnover over
centuries to millennia based on radioactive decay
and over decades, based on inputs of 14C from
atmospheric weapons testing (“bomb carbon”).

Accurate carbon turnover times are important
for ESM projections because pools with short
turnover times rapidly adjust to increasing NPP,
whereas pools with long turnover times (and, by
inference, low rates of inputs) change only slowly,
possibly beyond the time horizon of effective cli-
matemitigation efforts. Therefore, inaccuracies in
the representation of carbon turnover times will
have consequences for the rate and magnitude of
the carbon-concentration feedback simulated by
ESMs. Here, we used D14C measurements at 157
sites across multiple biomes (Fig. 1 and table S2)
along with carbon inventory data to constrain
soil carbon dynamics in five biogeochemically
coupled ESM simulations (esmFixClim1) from
theCoupledModel IntercomparisonProject Phase
5 (CMIP5) (20). In these idealized simulations, the
atmospheric CO2 mole fraction starts at a pre-
industrial value of 285 parts per million (ppm)
and rises at a rate of 1% year−1, thus quadrupling
over 140 years. The biogeochemical components
of each model experience the increasing trajec-
tory of atmospheric CO2,whereas the atmospheric
radiation submodels do not, limiting impacts sole-
ly to the direct effects of CO2 on plant physiology
and thus enabling diagnosis of carbon-sink sen-
sitivity to increasing CO2.
Total initial soil carbon in the ESMs was not

significantly different from the total amount in
the top meter of the Harmonized World Soil Data-
base (HWSD) (Fig. 2, A and B) for four of the
five models [P > 0.05, except for the Community
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Fig. 1. Locations of radiocarbon soil profiles used to constrain ESM soil carbon mean ages and turnover times (N = 157).The carbon-weighted D14C to a
depth of 1 m is denoted with the color shade of each symbol. A summary of the location, sample year, and reference for each site is provided in table S2.
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ESM (CESM), P = 0.03]. Therefore, we compared
ESM-derived D14C to observations derived from
soil profiles to a 1-m depth. The carbon and 14C
patterns of the soil profiles we used were similar
to those reported in a recent synthesis paper
(21), and we used some of the same profiles in
our analysis.
Comparing ESM outputs with 14C observations

requires a model analysis approach becausemost

ESMs do not yet explicitly simulate D14C in soils,
and noESMs had reported turnover times for soil
carbon pools. Therefore, we used a reduced com-
plexity (RC) model to approximate soil carbon
dynamics in each ESM. This approach allowed
us to estimate the turnover times and D14C as-
sociated with the carbon pools in different ESMs
(table S3). Where possible, we used a three-pool
RC model (with fast, slow, and passive pools) to

simulate carbon and 14C dynamics. A multipool
structure is essential because radiocarbon obser-
vations show that soil carbon fluxes (NPP inputs
and heterotrophic respiration) exchange mainly
with short-lived pools, whereas carbon stocks are
dominated by long-lived pools (12, 18, 22, 23). The
three-pool RC model had five parameters repre-
senting turnover timesof fast, slow, andpassivepools
(tfast, tslow, and tpassive) and transfer coefficients

SCIENCE sciencemag.org 23 SEPTEMBER 2016 • VOL 353 ISSUE 6306 1421

Table 2. Summary of sensitivity experiments.

Experiment

% change in

SOC after 14C

constraint*

14C-imposed sink

reduction (%)*

Correction factor

for turnover time*

Correction factor

for transfer

coefficient*

Biome-specific

inversions
17 ± 11 43 ± 24 – –

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Match SOC with

HWSD at sites†
18 ± 12 31 ± 40 13 ± 4.5 0.19 ± 0.23

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Match SOC with

1.5*HWSD at sites†
21 ± 12 19 ± 42 11 ± 4.5 0.38 ± 0.39

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

–1 SD of intersite

variation
14 ± 9.9 52 ± 23 – –

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

+1 SD of intersite

variation
23 ± 16 25 ± 25 – –

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

*The mean and standard deviation were estimated from the global mean change of each of the five individual ESMs. The correction factors for the turnover time and
transfer coefficients are reported for the slowest carbon pool. †The correction factors were obtained at each site, and then the mean scalar across all sites was
applied to the global forward simulation.

Table 1. Global soil carbon stocks and carbon uptake for CMIP5 models that experienced a quadrupling of atmospheric CO2 from a preindustrial
value of 285 ppm over a period of 140 years.

ESM

Initial

SOC

(Pg C)

%

change

in SOC

%

change

in SOC

after
14C

con-

straint

14C-

imposed

sink

reduction

(%)

tslow
(year)*

tpassive
(year)

rf rs

14C-imposed correction factors†

tslow tpassive rf rs

CESM1

(BGC)
571 6.3 5.1 19

56 ±

16

1310 ±

241

0.06 ±

0.05

0.33 ±

0.05
–

3.7 ±

1.5
–

0.34 ±

0.75
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

GFDL-

ESM2M
1344 26 3.3 87

231 ±

196
–

0.17 ±

0.07
–

16 ±

18
–

0.06 ±

0.14
–

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

HadGE

M2-ES
1028 63 33 46

208 ±

84
–

0.12 ±

0.07
–

17 ±

12
–

0.07 ±

0.32
–

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IPSL-

CM5A-

LR

1340 27 25 5.9
218 ±

82

1181 ±

347

0.06 ±

0.03

0.29 ±

0.07
–

14 ±

8.3
–

0.07 ±

0.14
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

MRI-

ESM1‡
1403 36 22 40

347 ±

117

1065 ±

257

0.17 ±

0.09

0.10 ±

0.06
–

13 ±

7.2

0.46 ±

0.79

0.34 ±

0.74
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

Mean§
1137 ±

312

32 ±

18

18 ±

12

40 ±

27

212 ±

104

1185 ±

123

0.12 ±

0.06

0.24 ±

0.12

16.5 ±

0.5

10.2 ±

4.6
– –

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

*tslow, tpassive denote the turnover time, and rf, rs denote the transfer coefficient from the fast to the slow pool and from the slow to the passive pool, respectively.
Reported values were estimated as an area-weighted mean and standard deviation of all model grid cells. †The mean and standard deviation of the 14C-imposed
correction factors were derived from using the 14C observations at each site in a single optimization and then averaging these scalar adjustments across the set of 157
optimizations. ‡The 14C-constrained sink reduction and correction factor for MRI were based on an inverse analysis that changed the pool size of both slow and
passive pools. The reported percentage change in SOC and sink reduction were derived from transient simulations starting at steady state with the reduced complexity
model. See methods in the supporting materials. §The multimodel mean and standard deviation were estimated using the mean value from each of the five ESMs.
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(rf and rs) that regulated carbon flow from the
fast to slow, and slow to passive pools (fig. S1).
We used a two-pool RC model for Geophysical
FluidDynamics Laboratorymodel ESM2M(GFDL-
ESM2M) because it represents soil carbon with
twopools (24) and forHadleyGlobal Environment
Model 2-ES (HadGEM2-ES) because it reported
carbon for two pools (table S4). The two-pool
RC model had three parameters, representing
tfast, tslow, and rf (fig. S1). After verifying that the
RC model was a good approximation of each
ESM based onminimization of root-mean-square
error, we used the RC models to simulate D14C
values at each grid cell, with observed atmospheric
D14C for the past 50,000 years as a boundary
condition and accounting for radioactive decay
(see supplementary materials).
We used an inverse analysis to determine the

RC model parameters that were most consistent
with our D14C data set. In the inversion, we ad-
justed the parameters described above to match
both the total carbon and radiocarbon constraints.
With these constraints, turnover time and car-
bon input rate for each pool were coupled such
that an increase in turnover time required a
compensatory decline in inputs (fig. S2). RC pa-
rameters derived from the inversion were sub-
sequently used to assess consequences of 14C
constraints for the carbon-concentration feedback.
All ESMs projected an increase in soil carbon

over 140 years with a multimodel mean of 32%
(Table 1). This increase was primarily driven by
increasing carbon inputs to soil under the quad-
rupling of CO2 (table S3), as temperature increased
by only a small amount (mean ± 1 SD was 0.52° ±
0.68°C) for this set of biogeochemically coupled
simulations. CESM showed the smallest soil car-
bon increase (6.3%), primarily because of low litter
inputs relative to other ESMs (table S3). For this
time period and set of model runs, storage in soil
carbon accounted for 42 ± 17% of the total accu-
mulation of carbon in the terrestrial biosphere.
Both two- and three-poolRCmodels reproduced

the global carbon dynamics of the original ESMs
(fig. S3 to S5 and table S5). The tfast across all RC
models was less than 20 years, whereas tslow varied
from 40 to 600 years (fig. S6) with a multimodel
mean of 212 ± 104 years. The mean tpassive for the
three-pool RC models from CESM, Institut Pierre
Simon Laplace model (IPSL), and the Meteorolog-
ical Research Institute model (MRI) was 1185 ±
123 years (Table 1 and fig. S7). Using the RCmodel
parameters estimated at each grid cell within an
ESM, we calculated the expected D14C. The result-
ing global average D14C for 1995 (median sample
year of site profiles) from the RC models was sig-
nificantly higher than the mean of the observa-
tions [–6.4 ± 64 permil (‰) versus –211 ± 156‰]
(Fig. 2, C and D (P < 0.001). D14C values from RC
models approximating ESMs with passive pools
were more negative (–53 ± 35‰) but still signif-
icantly higher than the observations (P < 0.001).
Converting these D14C observations into mean age
for the soil profile yielded an estimate of 3100 ±
1800 years for the observed soil carbon integrated
to 1 m and 430 ± 50 years for the ESMs (Fig. 2, E
and F). These results indicated that the ESMs

did not have enough old carbon that had ex-
perienced substantial levels of radioactive decay;
concurrently, the models assimilated too much
bomb 14C.
The 14C-derived mean ages indicate that or-

ganic carbon soil is often thousands of years old
(12–14, 21), which is an order of magnitude older
than suggested by ESM turnover parameters. This
discrepancy is likely a consequence of incomplete
representation of key biogeochemical processes
and difficulties in developing accurate param-
eterizations for soil carbon at a global scale. Most
ESMs do not account for stabilizationmechanisms
whereby mineral interactions and aggregate for-
mation protect soil organic matter from decom-
position over centuries to millennia (13, 25–28).
Moreover, first-order decay, as represented in
ESMs, may not capture the response of mineral-
stabilized carbon to changes in soil moisture,
temperature, and other conditions (29–31). In
addition, some ESM turnover parameters are
based on laboratory incubation studies, which
are often biased fast compared with in situ de-
composition rates (32). Finally, this set of ESMs

did not explicitly resolve vertical differences in
soil organic matter dynamics, which may cause
underestimation of turnover times in deep soils
with large carbon stocks (21, 25, 33, 34).
Because the turnover times derived fromESMs

were inconsistent with 14C observations, we op-
timized the turnover parameters by fitting our
RC models to the observations. We could then
run the optimized RC models to reevaluate soil
carbon storage for the transient 1% year−1 sim-
ulations. For this inverse approach, we optimized
RC model parameters in each grid cell contain-
ing an observation site (Fig. 2, G and H, and figs.
S8 and S9). We optimized the t of the slowest
pool and the corresponding transfer coefficient
into this pool based on the 14C observations while
holding soil inputs and t for the faster pools at
their ESM-derived values. The size of the slowest
carbon pool was constrained by optimizing the
turnover time and the transfer coefficient together
using both 14C and total carbon. Consequently, the
optimized RC model had about the same total
carbon stock as the original ESM, thereby main-
taining consistency with carbon inventory data.
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Fig. 2. Site and global values of soil carbon inventory, D14C, and mean age from observations and re-
duced complexity models. (A and B) SOC content of the original ESMs. (C and D) The D14C of the re-
duced complexity model optimized to the original ESMs. (E and F) Corresponding mean age (G and H) The
D14C of the 14C-constrained reduced complexity models. The left column shows the values of the models sam-
pled at the locations of the individual soil profiles; the right column shows the global model distribution. Data
from profile sites and the HWSD represent carbon content in the top 1 m of soil; data from ESMs are the total
carbon stock.The star denotes themean; the + symbol denotes outliers beyond the 25th and 75th percentiles.
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This optimization approach yielded tslow values of
3700±2800 years forGFDLand 3500± 1300 years
for HadGEM (using two-pool RC models), which
were 16 to 17 times as long as the turnover times
derived from the original ESMs.
For ESMs that included a passive pool, the

optimization process yielded three distinct out-
comes. For CESM, which has the largest passive
pool (73% of soil carbon), the optimized tpassive
was 4500 years, which was 3.7 ± 1.5 times as
long as tpassive derived from the original model
(Table 1). IPSL has a smaller fraction of passive
carbon (46%) and therefore required a greater
tpassive (16,500 years) to obtain agreement with
the observed D14C. For MRI, the passive pool size
was too small (only 13% of soil carbon) to bring
D14C into alignment with the profile observations
even after parameter optimization (fig. S10 and
table S5). To adjust for MRI’s potential bias in
the passive pool size, we optimized rf together
with tpassive and rs to allow for simultaneous
changes in slow and passive pool sizes. The
resulting RC model for MRI was able to match
observations (Fig. 2, G and H) with a passive
pool fraction of 48% (see Methods and table S5).
These results indicated that increasing the size
and turnover time of the passive pool in ESMs
would improve agreement with 14C-based mean
age estimates.
Bringing turnover time and carbon transfer

parameters into agreement with 14C observations
had considerable consequences for the magni-
tude of the carbon-concentration feedback. Using
the 14C-based parameters, we conducted global
transient simulations with each of the five RC
models. These simulations showed that the soil
as a whole (specifically the slow and passive pools)
stored much less carbon in response to increasing
levels of atmospheric CO2, primarily as a con-
sequence of reduced flow into the slow or passive
pool. The soil carbon sink decreased from 32 ±

18% to 18 ± 12% (Table 1), corresponding to an
absolute sink reduction of 170 ± 127 Pg C (Fig. 3).
The magnitude of the soil sink reduction varied
widely across the different models; those with
larger and older passive fractions at the onset
of the transient simulation (Table 1) generally
had smaller sink reductions.
To assess the robustness of these sink reduc-

tions, we conducted a series of sensitivity experi-
ments (see supplementary materials). We found
that the sink reduction imposed by constraining
the models with 14C observations was robust
to (i) turnover times optimized specifically for
different biomes, (ii) spatial variation and mag-
nitude of soil carbon stocks, and (iii) variations
in D14C across measurement sites (Table 2 and
table S6). Sink reductions declined by a factor of 2
when the models were fit to an inventory that
was 50% larger than the HWSD data set, sug-
gesting that if soil carbon pools were larger in
ESMs, 14C-imposed sink reductions would be
lower (35). Last, we used our RC model approach
to analyze four fully coupled ESM runs (1pctCO2)
to address potential interactions between the
carbon-climate and the carbon-concentration
feedback. Constraints imposed by 14C still reduced
the sink by at least 40% on average (fig. S11 and
table S7) in the fully coupled simulations (see
supplementary materials).
We conclude that CMIP5 ESMs underesti-

mated the mean age of soil carbon, especially
for slow-cycling pools. By adjusting the turnover
times of slow and passive pools to bring the
models into alignment with 14C observations,
the potential for future soil carbon sequestration
declined by 40 ± 27%. Although long-lived soil
carbon pools consistent with old 14C ages imply
a similar potential for carbon storage at steady
state, the time scale required to reach equilibrium
is too long to mitigate the potentially damaging
climate effects of rising CO2 concentrations during

the 21st century (fig. S2). These findings empha-
size the need to incorporate 14C and other diag-
nostics into ESM development and evaluation.
In addition, models require better representation
of long-term mechanisms of soil carbon stabiliza-
tion such as organic matter-mineral interactions.
Considered together with potential nutrient limi-
tation of NPP inputs to soil (36), our analysis
suggests that the carbon-concentration feedback
may be weaker in the 21st century than currently
expected from ESMs. Therefore, a greater fraction
of CO2 emissions than previously thought could
remain in the atmosphere and contribute to
global warming.
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An unexpected disruption
of the atmospheric
quasi-biennial oscillation
Scott M. Osprey,1* Neal Butchart,2 Jeff R. Knight,2 Adam A. Scaife,2,3 Kevin Hamilton,4

James A. Anstey,5 Verena Schenzinger,1 Chunxi Zhang4

One of the most repeatable phenomena seen in the atmosphere, the quasi-biennial oscillation
(QBO) between prevailing eastward and westward wind jets in the equatorial stratosphere
(approximately 16 to 50 kilometers altitude), was unexpectedly disrupted in February 2016. An
unprecedented westward jet formed within the eastward phase in the lower stratosphere and
cannot be accounted for by the standard QBO paradigm based on vertical momentum
transport. Instead, the primary cause was waves transporting momentum from the Northern
Hemisphere. Seasonal forecasts did not predict the disruption, but analogous QBO disruptions
are seen very occasionally in some climate simulations. A return to more typical QBO behavior
within the next year is forecast, although the possibility ofmore frequent occurrences of similar
disruptions is projected for a warming climate.

A
side from those variations governed by
the changing seasons or diurnal cycle, the
quasi-biennial oscillation (QBO) is arguably
the most repeatable mode of natural var-
iability seen anywhere in the atmosphere.

It was first discovered in the late 1950s (1, 2) and
features alternating eastward and westward wind
jets descending through the equatorial stratosphere
at roughly 1 kmpermonth (3), from~50km(~1hPa)
down to ~16 km (~100 hPa), with the quasi-biennial
periodicity beingmost evident in the ~20- to 40-km
layer. Since the 1950s, the period of the oscillation
has varied between 22 to 36months. The oscillation
is nearly zonally uniform and so is seen in both
local observations and in longitudinally averaged
data with roughly the same amplitude, at least
for monthly means, and is confined to equatorial
latitudes (4, 5). On the other hand, its influence is
felt throughout the atmosphere. For example, the
fate of ash and sulfur from large volcanic erup-

tions in the tropics is affected by the QBO (6), and
there are known surface weather and climate
impacts resulting from the QBO’s extratropical
teleconnections (7–9); such teleconnections may
provide an important source of predictability
that can be exploited with seasonal and decadal
prediction systems (10) owing to the regularity of
the QBO. Disruption to the regular QBO behav-
ior is therefore expected to have potentially far-
reaching consequences.
In November 2015, the QBO winds were

westward above 30 km (~15 hPa) and eastward
beneath. During November and December 2015,
the westward phase propagated downward as is
typical (Fig. 1A), but by January 2016, its descent
had stalled. Although by itself this was not un-
usual (Fig. 1A, during early 2009, just above 20hPa),
the stalling was followed by the unexpected for-
mation of a second westward layer interrupting
the lower stratospheric eastward phase (near
40 hPa). Subsequently, the descending westward
phase in the upper stratosphere began to recede,
while the anomalouswestward jet below strength-
ened and began to descend. Here, we quantify the
extent to which this behavior is anomalous com-
pared with the previous six decades of observa-
tions containing 27 QBO cycles.
The state of the QBO is often characterized by

using an updated time series of monthly mean
balloonobservationsof near-equatorial zonalwinds

(11). This record spans essentially the entire era
of operational tropical stratospheric wind sound-
ings fromJanuary 1956 to present day andprovides
724monthly profiles of the equatorial zonal wind.
For each of these profiles, we identified a “best
match”monthhaving the smallest rootmean square
(RMS) difference over seven levels spanning 70 to
10 hPa (Fig. 1B). For the vast majority of months,
there is a close match with another month in the
record, andRMSdifferences are typically 2 to 3ms−1.
Before 2016, the month with the largest RMS dif-
ferencewith its best historicalmatchwasDecember
1988 (4.8 ms−1). The unprecedented behavior in
2016 is apparent because February, March, and
April 2016 have RMS differences of 6.7, 10.1, and
6.8 ms−1, respectively.
Canonical theory describes the QBO as driven

by the interaction of the zonal mean flow, with a
spectrum of vertically propagating waves forced
in the lower atmosphere and dissipated within
the stratosphere (12, 13). Mean-flow driving is
proportional to local vertical wind shear so that
where there is westward vertical shear, the mean
flow is accelerated westward, and vice versa for
eastward vertical shear. This leads to the down-
ward phase propagation of the alternating QBO
wind regimes seen throughout the observed re-
cord (Fig. 1A). The selective filtering of upward
propagating waves by low-level jets then leads to
opposite-sign acceleration at higher levels in a
“shadowing effect.” Climatological large-scale
upwelling in the equatorial stratosphere (14) op-
poses the downward phase propagation (15) and
can contribute to the descent stalling, whereas
the forcing of the westward phase can be sup-
plemented by horizontally propagating quasi-
stationary planetarywaves from the extratropics,
particularly in boreal winter (16–19).
Because the strong westward accelerations

near 30 to 50 hPa in late 2015 and early 2016
occur in a region of eastward mean flow shear,
they cannot be accounted for by the canonical
theory. On the other hand, fluxes of wave activ-
ity (Fig. 2A, arrows) averaged for February 2016
suggest that waves propagating from the North-
ern Hemisphere might be the most likely cause
of the westward acceleration (planetary scale
Rossby waves propagating from the extratropics
can only transport westward momentum). Typi-
cally, during winter months upward wave activ-
ity fluxes enter the stratosphere at mid- to high
latitudes then refract equatorward. In February
2016, the anomalously strong high-latitude east-
ward jet was unusually flanked by subtropical
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