
 

1 

 

Using models to guide field experiments: a priori predictions for the CO2 1 

response of a nutrient- and water-limited native Eucalypt woodland 2 

 3 

Belinda E. Medlyn
1,2,*

, Martin G. De Kauwe
2
, Sönke Zaehle

3
, Anthony P. Walker

4
, 4 

Remko A. Duursma
1
, Kristina Luus

3
, Mikhail Mishurov

5
, Bernard Pak

6
, Benjamin 5 

Smith
5
, Ying-Ping Wang

6
, Xiaojuan Yang

4
, Kristine Y. Crous

1
, John E. Drake

1
, 6 

Teresa E. Gimeno
1,7
, Catriona A. Macdonald

1
, Richard J. Norby

4
, Sally A. Power

1
, 7 

Mark G. Tjoelker
1
, David S. Ellsworth

1
  8 

 9 

1. Hawkesbury Institute for the Environment, Western Sydney University, Locked 10 

Bag 1797, Penrith NSW 2751, Australia 11 

2. Department of Biological Sciences, Macquarie University, North Ryde NSW 2109, 12 

Australia 13 

3. Biogeochemical Integration Department, Max Planck Institute for 14 

Biogeochemistry, Hans-Knöll-Str. 10, D-07745 Jena, Germany  15 

4. Oak Ridge National Laboratory, Environmental Sciences Division and Climate 16 

Change Science Institute, 1 Bethel Valley Road, Oak Ridge, TN, USA  17 

5. Department of Physical Geography and Ecosystem Science, Lund University, 18 

Sölvegatan 12, 22362 Lund, Sweden 19 

6. CSIRO Oceans and Atmosphere Flagship, Private Bag 1, Aspendale, Victoria 20 

3195, Australia. 21 

7. INRA
 
UMR 1391 ISPA, 33140 Villenave d’Ornon Cedex, France 22 

 23 

* Corresponding author.  24 

Current address: Hawkesbury Institute for the Environment, Western Sydney 25 

University, Locked Bag 1797, Penrith NSW 2751, Australia 26 

Phone: +612 4570 1372 27 

Fax: +612 4570 1103 28 

Email: b.medlyn@uws.edu.au 29 

 30 

For submission to: Global Change Biology 31 

Running head: Model predictions for the EucFACE experiment 32 

Page 1 of 45 Global Change Biology



 

2 

 

Keywords: Carbon dioxide, ecosystem model, phosphorus, drought, Eucalyptus 33 

tereticornis 34 

Type of Paper: Primary Research Article 35 

 36 

No of Words: 7659 37 

No of Tables:  2 38 

No of Figures: 8  39 

Page 2 of 45Global Change Biology



 

3 

 

ABSTRACT  40 

The response of terrestrial ecosystems to rising atmospheric CO2 concentration (Ca), 41 

particularly under nutrient limited conditions, is a major uncertainty in Earth System 42 

models. The Eucalyptus Free-Air CO2 Enrichment (EucFACE) experiment, recently 43 

established in a nutrient-and water-limited woodland, presents a unique opportunity to 44 

address this uncertainty, but can best do so if key model uncertainties have been 45 

identified in advance. We applied seven vegetation models, which have previously 46 

been comprehensively assessed against earlier forest FACE experiments, to simulate 47 

a priori possible outcomes from EucFACE. Our goals were to provide quantitative 48 

projections against which to evaluate data as they are collected, and to identify key 49 

measurements that should be made in the experiment to allow discrimination among 50 

alternative model assumptions in a post-experiment model intercomparison. 51 

Simulated responses of annual net primary productivity (NPP) to elevated Ca ranged 52 

from 0.5 to 25% across models. The simulated reduction of NPP during a low rainfall 53 

year also varied widely, from 24% to 70%. Key processes where assumptions caused 54 

disagreement among models included nutrient limitations to growth; feedbacks to 55 

nutrient uptake; autotrophic respiration; and the impact of low soil moisture 56 

availability on plant processes. Knowledge of the causes of variation among models is 57 

now guiding data collection in the experiment, with the expectation that the 58 

experimental data can optimally inform future model improvements.  59 

 60 

  61 
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INTRODUCTION 62 

Ecosystem-scale manipulation experiments provide a unique opportunity to constrain 63 

the process-based vegetation models used to predict future productivity, carbon 64 

sequestration and land surface properties (Piao et al., 2013; Dukes et al., 2014; 65 

Medlyn et al., 2015; Norby et al., 2015). For example, one of the major uncertainties 66 

in projecting future atmospheric CO2
 
concentration (Ca) is the uptake of C by 67 

terrestrial vegetation (Arora et al., 2013; Friedlingstein et al., 2014).  Ecosystem-scale 68 

Free-Air CO2 Enrichment (FACE) experiments, in which vegetation is exposed to 69 

elevated Ca (eCa) continuously for a decade or more, are an essential source of data to 70 

both inform and test modelled responses. Previous FACE experiments have been 71 

especially valuable because they provided a comprehensive set of measurements of 72 

the major carbon, water, and nutrient fluxes, and were of long enough duration to 73 

capture the influences of year-to-year variation in weather, adjustment of transient 74 

responses, and shifts in vegetation structure (Norby & Zak, 2011).  Such experiments 75 

can inform our ability to model vegetation responses to nutrient limitation and water 76 

stress as well as rising Ca.  77 

 78 

The FACE Model-Data Synthesis project (Walker et al., 2014, Medlyn et al., 2015) 79 

tested 11 vegetation models against data from two forest FACE experiments and 80 

successfully identified a number of ways in which model assumptions could be 81 

improved based on these data, including recommendations for advancing the 82 

modelling of stomatal conductance (De Kauwe et al., 2013), predicting nutrient 83 

limitations of growth (Zaehle et al., 2014), and capturing flexibility of carbon 84 

allocation patterns (De Kauwe et al., 2014). However, that model-data synthesis 85 

project took place after the experiments had been completed, too late to adapt the 86 

process of data collection to better inform the model simulations and reduce the 87 

identified uncertainties. Based on these and similar experiences, there is an increasing 88 

awareness that the knowledge advances from long-term ecosystem experiments can 89 

be maximised if models are employed from the outset (Luo 2001; Parton et al., 2007; 90 

Norby et al., 2015).  91 

 92 

Model simulations at the commencement of an experiment serve a number of 93 

purposes. They can highlight key areas of model uncertainty that could be addressed 94 
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experimentally (e.g. McMurtrie & Comins 1996), and can identify powerful sets of 95 

measurements to discriminate amongst competing hypotheses (e.g. Dietze et al., 96 

2014). They can also provide a benchmark against which to compare experimental 97 

results, making it possible to identify outcomes that are consistent or inconsistent with 98 

existing theory (Luo et al., 2011). For example, Parton et al. (2007) used the 99 

DAYCENT model to predict ecosystem impacts of eCa and warming in a semi-arid 100 

grassland in advance of the Prairie Heating and CO2 Enrichment (PHACE) 101 

experiment. The model predictions of the response to nitrogen mineralization to 102 

increased soil temperature and reduced soil moisture helped to structure the 103 

measurements and reporting of results, which were shown to support the model 104 

predictions (Dijkstra et al., 2010). Furthermore, application of models throughout the 105 

course of the experiment stimulates data collection, verification, and archival in a 106 

model-friendly format, which can be extremely difficult to achieve retrospectively 107 

(Norby et al., 2015).  108 

 109 

In this paper, we applied representative vegetation models to the recently-established 110 

EucFACE experiment. EucFACE is a FACE experiment in a mature, natural 111 

Eucalyptus woodland in western Sydney, growing in nutrient- and water-limited 112 

conditions. Soil at the experimental site is strongly depleted in organic matter and 113 

nutrients, particularly extractable phosphorus, and leaf nitrogen:phosphorus (N:P) 114 

ratios are high (see Supporting Table S1). At the start of the experiment, it was 115 

thought likely that P availability was limiting to tree growth at the site, a hypothesis 116 

that has since been supported experimentally (Crous et al. 2015). The site also has 117 

low water availability; mean annual potential evapotranspiration is 1300 mm while 118 

mean annual rainfall is 800 mm, with a 10
th
 percentile of 530 mm. A nearby 119 

experiment with young Eucalyptus trees has found strong responses to both irrigation 120 

and fertilisation (Craig Barton and Burhan Amiji, unpublished data). 121 

 122 

Previous experiments have demonstrated that water- and N-cycle interactions are key 123 

determinants of the plant growth response to eCa (e.g. Dukes et al., 2005, Reich et al., 124 

2014) and that divergent patterns of plant carbon (C) allocation can affect long-term 125 

growth under eCa via feedbacks related to nutrient acquisition (e.g., contrasting results 126 

of McCarthy et al., 2010; Norby et al., 2010). Possible interactions between P 127 

availability and eCa have received relatively little attention despite widespread P 128 
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limitation across much of the globe (McGroddy et al., 2004; Wang et al., 2010; 129 

Cleveland et al., 2011). Several glasshouse-based experiments suggest a constrained 130 

growth response to eCa under low soil P (Conroy et al., 1990, Edwards et al., 2005, 131 

Lewis et al., 2010), but one experiment with Eucalyptus grandis seedlings found large 132 

proportional increases in growth with eCa under very low soil P, enabled by a 133 

decreased tissue P content (Conroy et al., 1992). There are few field data exploring 134 

interactions of eCa with P availability. Predicting likely outcomes for the EucFACE 135 

ecosystem thus presents a real challenge for vegetation models.  136 

 137 

To quantify potential impacts of eCa and nutrient and water limitation at the 138 

EucFACE site, we employed seven vegetation models. These models are based on 139 

generalised global or large-scale parameterisations of key processes and have not 140 

been calibrated against observations from specific sites. The experiment provides a 141 

unique opportunity to explore the validity of these generalised assumptions for the 142 

case of a forest growing under nutrient and water limitations as well as the effects of 143 

rising Ca. Six of the models were used in the previous FACE Model-Data Synthesis 144 

project and thus have been fully evaluated against data from the Oak Ridge and Duke 145 

Forest FACE experiments (De Kauwe et al. 2013; 2014; Medlyn et al. 2015; Walker 146 

et al. 2014; 2015; Zaehle et al. 2014), while the seventh model, CLM4-P, is an 147 

extension of CLM4 that incorporates phosphorus cycling. By evaluating multiple 148 

model differences at the outset of EucFACE, we aimed to uncover fundamental 149 

differences in modelling approaches that would enable future data collection to be 150 

optimised for ongoing model improvements or future intercomparisons. Specific goals 151 

were to (1) provide a range of quantitative predictions for the experiment against 152 

which data can be assessed as they become available; and (2) identify key sets of 153 

measurements that would allow us to discriminate among variable model predictions 154 

driven by alternative model assumptions.  155 

 156 

 157 

MATERIALS AND METHODS 158 

Overview 159 

We examined the responses of stocks and fluxes of C, N, P and water predicted by 160 

seven process-based vegetation models to 12 years of both ambient and elevated Ca 161 
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exposure. Modellers were provided with meteorological forcing, Ca, N deposition data 162 

and general site information describing the physiology and structure of the stand. 163 

Models were spun-up using historical climate data for the site. We simulated a 12-yr 164 

experimental period assuming two alternative sets of weather forcing. The ‘fixed’ 165 

weather forcing simply repeated weather data from a relatively wet year for the site 166 

location, while the ‘variable’ weather forcing used a 12-year period of weather chosen 167 

from the recent historical record that included a reasonably strong variability in water 168 

availability.  169 

 170 

The models  171 

Of the seven process-based vegetation models used in this inter-comparison, two 172 

models include both N and P limitations to growth: Community Atmosphere 173 

Biosphere Land Exchange (CABLE) (Wang et al., 2010, 2011), and Community Land 174 

Model 4 with phosphorus (CLM4.0-CNP, henceforth CLM4-P) (Yang et al., 2014). 175 

Four models represent nitrogen limitation only: Community Land Model 4.0 176 

(CLM4.0, henceforth CLM4) (Oleson et al., 2010), Generic Decomposition and Yield 177 

(GDAY) (Comins & McMurtrie, 1993), Lund-Potsdam-Jena General Ecosystem 178 

Simulator with carbon-nitrogen cycling (LPJ-GUESS) (Smith et al., 2014) and 179 

Orchidee-C-N (O-CN) (Zaehle & Friend, 2010). Finally, the Sheffield Dynamic 180 

Global Vegetation Model (SDGVM) (Woodward & Lomas, 2004) is not 181 

stoichiometrically limited by N and considers only an empirical N limitation whereby 182 

leaf N is a function of soil C, and photosynthetic rates are a function of leaf N 183 

(Woodward et al., 1995). Although we classify the models by their nutrient 184 

limitations, the models differ in many ways. The key assumptions of each model are 185 

summarised in Table 1. 186 

 187 

Simulation protocol 188 

To generate hypothetical meteorological data for these simulations, we obtained a 20-189 

year sequence from the recent past (1992-2011) from the closest 1.0-degree pixel to 190 

the experimental site from the global Princeton meteorological dataset (GPM; 191 

Sheffield et al., 2006). Models were initialised by recycling this meteorological 192 

sequence, using pre-industrial Ca (277 µmol mol
-1
) and N deposition (2.25 kg N ha

-1
 193 

yr
-1
), until model stocks of C and, where simulated, N and P, had equilibrated. Once 194 

equilibrated states had been obtained, models were run for a transient period to 195 
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account for changes in C, N and P balance induced by climate and Ca trends through 196 

the industrial period (1750-2012). Historical Ca concentration data were obtained 197 

from Vetter et al. (2008) and N deposition data from Dentener et al. (2006) for the 198 

closest location to the EucFACE site.  199 

 200 

The site is dominated by Eucalyptus tereticornis trees. None of the models explicitly 201 

represents Eucalyptus and so they simulated the closest representative plant functional 202 

type, typically evergreen broadleaf trees. Estimated baseline data were provided for 203 

the site, including stand density, diameter at breast height (DBH) and standing 204 

biomass; physiological parameters; soil extractable water and texture; and soil 205 

nutrient contents. The information document provided to modellers is given as 206 

supporting information (Supplementary S1). This information was provided in June 207 

2013, shortly after the start of the experiment. No information on experimental results 208 

from the site was available to the modellers at the time of the model runs, thus 209 

precluding calibration of the models against experimental data. Not all baseline 210 

information provided could be used in all models; in many cases models were run 211 

with their respective default or predicted parameter values.  212 

 213 

Models that had the ability to represent stochastic fire events switched these 214 

mechanisms off for the course of the spin-up, transient and experimental period to 215 

facilitate comparison among models. Models were run for the forest canopy 216 

overstorey only, as most models were unable to simulate true mixtures of trees and 217 

grass, and the understorey forms a small component of total biomass at the site.  218 

 219 

Experimental simulations were run for a hypothetical period 2012 – 2023, accounting 220 

for anticipated increase in ambient CO2 concentrations, but no trends in climate 221 

drivers, during this period. For the ambient Ca simulations, we applied a conservative 222 

rate of increase in Ca, following the Representative Concentration Pathways (RCPs) 223 

emission pathway RCP3-PD  (Meinshausen et al., 2011). This scenario is identical to 224 

RCP4.5 in the simulation period and results in an increase in Ca in the ambient 225 

treatments from 393.8 to 418.6 ppm, a 24.8 ppm or 6% increase. For the elevated Ca 226 

simulations, we applied a ramp in Ca following the EucFACE experimental protocol 227 

(Drake et al. 2015): ambient + 30 ppm during September 2012; ambient +60 ppm 228 

during October 2012; ambient + 90 ppm during November 2012; ambient +120 ppm 229 
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during December 2012; and ambient + 150 ppm from January 2013 onwards (Figure 230 

1a).  231 

 232 

We ran simulations with both fixed and variable interannual meteorological data. For 233 

the fixed year we chose a relatively wet year (1998), while the varying 12-year 234 

sequence was selected to encompass periods of both wet and dry years (Figure 1b). 235 

The combination of fixed and variable simulations was designed to allow us to 236 

investigate interactions between eCa and soil moisture availability. Hourly 237 

meteorological data were disaggregated from the 3-hourly GPM data using the 238 

CABLE weather generator (Haverd et al., 2013). Disaggregated hourly temperature 239 

and precipitation data were compared to available local site meteorological 240 

measurements and were found to match annual means and intra-annual variability 241 

well (not shown).  242 

 243 

Each model was used to perform four simulations: 244 

1. AF: Ambient simulation with fixed meteorological data and RCP3-PD CO2 245 

concentrations.  246 

2. AV: Ambient simulation with varying meteorological data and RCP3-PD 247 

CO2 concentrations. 248 

3. EF: Elevated simulation with fixed meteorological data and RCP3-PD CO2 249 

concentrations + ramp to 150 ppm. 250 

4. EV: Elevated simulation with varying meteorological data and RCP3-PD CO2 251 

concentrations + ramp to 150 ppm. 252 

 253 

Models were required to output up to 116 variables on a daily basis, including 254 

meteorological data and C, N, P and water fluxes and pools. Outputs were collated 255 

centrally and then checked to ensure mass balance of C, N, P and water in all models 256 

on an annual basis. Mass balance calculation details are shown in Supplement S5. We 257 

found that this level of output was required to verify that models were consistently 258 

using the same meteorological data  and interpreting output variables in comparable 259 

ways. Daily and annual outputs were compared across models to quantify differences 260 

in predicted ambient ecosystem fluxes and their responses to elevated Ca.  261 

 262 
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RESULTS 263 

Ambient Ca, constant climate 264 

Modelled fluxes under ambient Ca conditions with constant climate are shown in 265 

Figure 2. Modelled GPP varied by as much as a factor of two among models, and 266 

depended on how nutrient limitation is represented in each model (Figure 2a). The 267 

lowest GPP was estimated by CLM4-P, which assumed strong limitations by both 268 

nitrogen (N) and phosphorus (P), and the highest GPP was estimated by SDGVM, 269 

which assumed no stoichiometric nutrient limitation. Among the N-limited models, a 270 

range of GPP values was predicted, with the lowest value (LPJ-GUESS) approaching 271 

that of CLM4-P, and the highest value (O-CN) approaching that of SDGVM.  272 

 273 

There were sizeable differences in predicted autotrophic respiration rates (Rauto)carbon 274 

use efficiency (CUE) among models , due towhich was caused by different model 275 

assumptions for autotrophic respiration, Rauto. Differences among the models in 276 

assumptions relating to Rauto can be most clearly seen by comparing model estimates 277 

of carbon use efficiency (CUE),CUE  which is the fraction of GPP not lost to 278 

respiration, calculated asor 1 – Rauto / GPP. CUE was set to 50% in GDAY, and a 279 

similar ratio was predicted by both SDGVM and CABLE (Figure 2c). In O-CN, it is 280 

assumed that nutrient limitation leads to excess C being respired, here resulting in a 281 

relatively low CUE. High leaf and root respiration rates in CLM4 and CLM4-P, and 282 

high sapwood respiration rates in LPJ-GUESS, led to particularly low (~25%) CUE in 283 

these models. This low CUE meant that ambient NPP predicted by these models was 284 

low (Figure 2b), as little as 300 g C m
-2
 yr

-1
 in CLM4-P and LPJ-GUESS, compared 285 

to 1200 g C m
-2
 yr

-1
 predicted by the non-nutrient limited, high-CUE model SDGVM.  286 

 287 

Predicted LAI was high, compared to the site estimate provided to modellers of 1.5 288 

m
2
 m

-2
, in three of the seven models (Figure 2d). It was highest (> 4.5 m

2
 m

-2
) in 289 

SDGVM, a consequence of this model’s optimal LAI allocation. In SDGVM, LAI is 290 

increased to the point where the carbon balance of the lowest layer of foliage in the 291 

canopy is zero. This optimisation scheme resulted in a high fraction of NPP allocated 292 

to foliage, well above that of the other models (see Supporting Figure S2). The 293 

variability among other models in predicted LAI depended on simulated NPP as well 294 

as the fraction of NPP allocated to foliage (which varied from 8 – 33%, Figure S2) 295 
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and the values of leaf mass per area (LMA) and leaf turnover time. Values of LMA in 296 

models ranged from 104 to 229 g dry matter m
-2
 (the site estimate provided was 229 g 297 

m
-2
) while leaf turnover times ranged from one to three years (the site estimate 298 

provided was 18 months).  299 

 300 

There was as much as a twofold difference among models in predicted canopy 301 

transpiration, ranging from ca. 350 mm yr
-1
 in GDAY up to ca. 760 mm yr

-1
 in O-CN 302 

(Figure 2e). This range represents 40 – 85% of annual precipitation in the constant 303 

climate scenario. Water use efficiency (WUE, calculated as GPP / transpiration) was 304 

similar in most models, meaning that differences in transpiration were correlated with 305 

differences in GPP. However, the CLM4-P model had particularly low WUE because 306 

canopy transpiration is calculated from potential GPP (i.e. GPP calculated without N 307 

and P limitations) rather than nutrient-limited GPP, resulting in relatively high 308 

transpiration rates.  309 

 310 

Nutrient pools and fluxes also varied strongly among models (Figure 2f,g). While N 311 

deposition was specified as an input (averaging 3.3 g N m
-2
 yr

-1
 over the experimental 312 

period), the models differed in the amount of biological N fixation predicted, ranging 313 

from close to zero (O-CN, LPJ-GUESS) up to 5 g N m
-2
 yr

-1
 in CABLE, which uses 314 

the N fixation model of Houlton et al. (2008).  Nitrogen losses from the system also 315 

varied among models, from close to zero up to 2.5 g N m
-2
 yr

-1
 gaseous losses 316 

(CLM4) and 4.8 g N m
-2
 yr

-1
 leaching (CABLE).  Total soil nitrogen varied from 140 317 

g N m
-2
 (LPJ-GUESS) to 810 g N m

-2
 (CLM4). Net N mineralisation and plant N 318 

uptake both ranged from ca 3 (in LPJ-GUESS) up to 11 g N m
-2
 yr

-1
 (in CABLE). 319 

Predicted canopy N content was lowest in LPJ-GUESS (~3 g N m
-2
) and highest in 320 

CLM4 (~10 g N m
-2
), bracketing the site estimate of 6 g N m

-2
.  The two models 321 

simulating P cycling, CABLE and CLM4-P, differed in their predictions of P uptake 322 

by a factor of 4 (Figure 2h).  323 

 324 

Elevated Ca responses, constant climate 325 

Differences among the models’ predicted responses to elevated Ca are related to the 326 

alternative hypotheses for nutrient cycling embedded in the models (Figure 3).  The 327 

non-stoichiometrically limited model, SDGVM, showed a sustained response of GPP 328 

to eCa over the 12-yr simulation (Figure 3a). There was a lagged response of 329 
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respiration and thus CUE as biomass increased (Figure 3c), meaning that there was an 330 

initial strong stimulation of NPP (Figure 3b), which then relaxed to a slightly lower 331 

stimulation than that of GPP. Although sustained, the SDGVM response was smaller 332 

than predicted by some of the N-limited models, principally because SDGVM 333 

predicted a high LAI under ambient conditions (Figure 2d). Leaf photosynthesis was 334 

thus largely light-limited and was less responsive to Ca than in a more open canopy 335 

where light is less limiting.  336 

 337 

The two P-limited models both simulated a minimal response of NPP to eCa (Figure 338 

3b) because the plants were unable to increase P uptake (Figure 3h) to support any 339 

increase in C uptake. The mechanism is similar in both models, although it is 340 

implemented in a slightly different way. In CLM4-P, potential GPP is down-regulated 341 

to the GPP that is able to be supported by P uptake, whereas in CABLE, GPP is 342 

unchanged and respiration rate is up-regulated (Figure 3a,c). Thus, CLM4-P showed a 343 

minimal eCa effect on GPP, CUE, and NPP, whereas CABLE showed a substantial 344 

eCa effect on GPP and CUE, yielding no overall increase in NPP.  345 

 346 

Of the N-limited models, O-CN predicted the largest sustained GPP response to eCa 347 

(Figure 3a). The initial response of G’DAY was similar to that of O-CN but this 348 

response declined over time. In G’DAY, the initial stimulation of GPP and NPP 349 

caused leaf N concentration ([N]) to fall (Figure 3f), driving a decline in litter quality 350 

that led to N immobilization in the soil. Reduced N availability for uptake (Figure 3g) 351 

then caused leaf [N] to fall further, causing a strong feedback on the eCa response of 352 

GPP. In the O-CN model, limited N available for uptake drove a large increase in 353 

plant respiration, meaning that the NPP response to eCa was small despite the large 354 

increase in GPP.   355 

 356 

In contrast to O-CN and GDAY, the CLM4 model assumes fixed C:N stoichiometry 357 

in plant tissues (Table 1). Rather than a gradual feedback via increasing tissue C:N, 358 

this model assumes that the eCa response of NPP and GPP are immediately limited if 359 

there is insufficient N available to build additional new tissue, so any increase in NPP 360 

is determined by whether or not there is additional N available for uptake. CLM4 has 361 

a high rate of denitrification, which is suppressed due to higher plant N demand under 362 

elevated Ca, leading to a ~10% increase in plant N uptake (Figure 3g) and 363 
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consequently a ~10% increase in NPP under elevated Ca  (Figure 3b). By contrast P 364 

does not have a gaseous loss pathway and thus CLM4-P only increases P uptake via 365 

increased competitiveness for P with microbes, leading to a small (3-4%) eCa 366 

response of P uptake, NPP, and GPP (Figures 3a, b, h).  367 

 368 

The approach taken in LPJ-GUESS is quite different from other models because it 369 

uses an optimisation scheme for canopy photosynthesis that predicts canopy N based 370 

on the balance between photosynthesis and respiration (Haxeltine & Prentice 1996). 371 

This scheme results in an acclimation of photosynthesis to elevated Ca via a reduction 372 

in canopy N content. The eCa response of GPP was, therefore, strongly limited by 373 

available mineral N. However, the reduction in leaf N:C ratio under eCa (Figure 3f) 374 

led to a reduction in respiration rate and thus a strong increase in CUE (Figure 3c), 375 

yielding a large response of NPP to eCa (Figure 3b). It can also be observed that there 376 

is a year-to-year oscillation in the LPJ-GUESS outputs. This oscillation is due to the 377 

dependence of mineral soil N on leaf litter input, which occurs on an annual time-step. 378 

Annual time-steps can be problematic in global models because the appropriate date 379 

for processes may differ in northern and southern hemispheres. Here, the oscillation is 380 

exacerbated because, in the southern hemisphere, leaf litterfall accumulated from the 381 

previous calendar year becomes available for mineralisation in mid-winter, which is 382 

six months later, on 1
st
 July.  383 

 384 

Overall, the models can be divided into those with a strong positive NPP response to 385 

eCa (> 20%; GDAY, LPJ-GUESS), an intermediate response (10 – 15%; SDGVM, 386 

CLM4) or minimal response (0-5%; O-CN, CABLE, CLM4-P) (Figure 3b).  387 

Predicted responses of LAI were similar in size to the respective NPP responses 388 

except in SDGVM, which predicted a small response of LAI due to a minimal 389 

increase in the optimal LAI under eCO2 assumed by this model (Figure 3d). The two 390 

models that predicted the largest increases in LAI were GDAY and LPJ-GUESS, with 391 

predicted increases of ca. 16-20%.   392 

 393 

The eCa effect on transpiration varied among the models from -8% to +8% (Figure 394 

3e). The differences among the models can be explained in terms of the eCa effect on 395 

GPP (see above) and that on water-use efficiency (WUE). Inter-model differences in 396 

WUE are well-understood following the extensive analysis by De Kauwe et al. 397 
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(2013). The models considered here make very similar assumptions about the effect 398 

of eCa on stomatal conductance – the ratio of photosynthesis to stomatal conductance 399 

is assumed to be nearly proportional to Ca – but they differ in how strongly 400 

transpiration is coupled to stomatal conductance (Table 1). The O-CN and GDAY 401 

models predicted large eCa effects on WUE because transpiration is closely coupled 402 

to stomatal conductance. However, these models both had strong eCa responses of 403 

GPP, meaning that the eCa effect on transpiration was relatively small. In the CABLE 404 

model, the eCa response of WUE was somewhat smaller than that of O-CN and 405 

GDAY because transpiration is less strongly coupled to stomatal conductance. 406 

However, CABLE’s GPP response was also small, due to P limitation, so the limited 407 

increase in WUE translated into the largest reduction in transpiration among the 408 

models. Transpiration and stomatal conductance are not closely coupled in LPJ-409 

GUESS, which predicted an increase in transpiration with eCa despite a reduction in 410 

stomatal conductance.  411 

 412 

Ambient Ca, variable climate 413 

Models agreed that GPP and NPP would be reduced in years with low rainfall (2016, 414 

2017, 2019) and increased in the wettest year (2021) but the size of the impact varied 415 

considerably among models (Figure 4a,b). In the driest year (2016), for example, GPP 416 

was reduced between 18% (CABLE, LPJ-GUESS) and 38% (CLM4, SDGVM) while 417 

NPP was reduced between 24% (CABLE) and 70% (CLM4, LPJ-GUESS). Thus, the 418 

spread among models in the predicted effect of interannual variability on GPP and 419 

NPP is of a similar magnitude to the spread in the predicted effect of increased Ca.  420 

 421 

The principal reason for this variation among models is that different models 422 

represent the impact of drought on gas exchange very differently (Table 1). To 423 

contrast this effect among models, we requested each model output a reduction factor 424 

(β), which is the ratio of predicted gas exchange at a given soil water content (SWC) 425 

to that at field capacity.  Figure 5 shows that the relationship between β and SWC 426 

differs greatly among models. Some models calculate β as a function of total SWC 427 

(GDAY, SDGVM) but differ in their parameterisation of this function, such that gas 428 

exchange is reduced at higher SWC values in GDAY than in SDGVM. The β function 429 

in GDAY is taken from Landsberg & Waring (1997) while the function used in 430 
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SDGVM is based on Gollan et al. (1992). The low drought sensitivity in SDGVM 431 

resulted in a very large reduction in soil water content (Figure 4f), because the plants 432 

continue transpiring until low SWC is reached.  433 

 434 

The CABLE model calculates β as a function of root-weighted SWC, such that the 435 

water content of the upper soil layers has more impact on β  than the lower layers. As 436 

a result, the same β may be obtained for a very wet soil that has undergone a short 437 

drought, or a very dry soil that has had recent rainfall. The CLM4 and CLM4-P 438 

models similarly use a root-weighting function, but it is applied to soil water potential 439 

(SWP) rather than SWC. Since SWP is a strongly non-linear function of SWC, this 440 

function implies that small changes in SWC can have a large impact on β. Figure 5 441 

shows that the β factor declined very steeply with SWC in these models, resulting in 442 

an on-off behaviour of gas exchange as soil dried down. Further causing differences 443 

among models, the calculated β factor may be applied to stomatal conductance 444 

(CABLE), the maximum rate of Rubisco activity (CLM4, CLM4-P), or both of these 445 

(GDAY, O-CN, SDGVM). In models such as CABLE where β is only applied to 446 

stomatal conductance, water use efficiency increases in drought, such that 447 

transpiration can decline much more strongly than photosynthesis (e.g. compare 448 

Figure 4a,e for CABLE).  449 

 450 

The LPJ-GUESS model takes a fundamentally different approach to calculating the 451 

drought impact: it calculates whether soil water supply (based on root-weighted soil 452 

water content and maximum transpiration rate) is sufficient to meet demand (based on 453 

photosynthetic rate) and reduces photosynthesis on days where supply is less than 454 

demand (Table 1). As a result, low soil water availability has most impact on days of 455 

high demand (those with high incident PAR) and may have no impact at all on days of 456 

low demand (such as days of cooler temperature). The β factor is more strongly 457 

related to incident PAR than to SWC.  458 

 459 

Another reason for the difference among models is the non-drought LAI: models with 460 

high non-drought LAI and transpiration rate (e.g., CLM4, SDGVM) tended to show 461 

larger reductions in soil water content over time during drought. For example, the 462 

impact of drought was significantly larger in CLM4 than CLM4-P (Figure 4a) 463 
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although they use the same drought response function. Due to the P limitation on 464 

growth in CLM4-P, non-drought LAI was predicted to be considerably lower in this 465 

model (1.5 cf. 3.5 m
2
 m

-2
 in CLM4, Figure 2d); consequently, transpiration rate was 466 

lower and soil water content remained higher than in CLM4.  467 

 468 

The relative impact of drought years on NPP (as opposed to GPP) was greatest in 469 

those models that have a low baseline CUE, particularly CLM4 and LPJ-GUESS. In 470 

these models, a large fraction of GPP was used in respiration (up to 75%) (Figure 2c). 471 

In consequence, a relatively small reduction in GPP (ca. 20% in LPJ-GUESS) 472 

translated into a large reduction of about 80% in NPP in the first severe drought year, 473 

when respiration rates were still high (Figure 4b). In subsequent years, however, 474 

respiration rates were lower, due to lower biomass production, such that the impact of 475 

drought on NPP was lessened. This ‘catch-up’ effect on respiration is an example of a 476 

lagged effect of drought. Lagged effects can also be seen in the response of LAI in 477 

several models: in SDGVM, for example, the drought impact on GPP in 2016 and 478 

2017 resulted in lower LAI in 2018, with consequences for GPP in that year and 479 

further feedbacks to LAI in subsequent years (Figure 4a, d).  480 

 481 

Elevated Ca responses, variable climate. 482 

The interaction between eCa and rainfall is complex. Low water availability may lead 483 

to higher eCa responses because stomatal closure can yield water savings, providing 484 

an additional stimulation to photosynthesis. However, feedbacks via increased LAI in 485 

eCa may also negate water savings. To examine differences among models, we 486 

evaluated whether they predicted increased soil water content, increased LAI, both, or 487 

neither (Figure 6).  488 

 489 

In the wettest year (Figure 6a), there are clear differences among models in whether 490 

the impact of eCa is principally on LAI or SWC, which can be understood in terms of 491 

their underlying assumptions. The models SDGVM, CLM4 and GDAY tended to 492 

show an increase in LAI, because these models all simulated an increase in NPP that 493 

led to increased LAI, the resultant larger surface area for transpiration outweighing 494 

the effects of stomatal closure. In contrast, the O-CN model showed an increase in 495 

soil moisture, because it simulated no change in NPP or LAI. The two P-limited 496 

models CLM4-P and CABLE tended to show neither effect. In both these models 497 
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there was no change in NPP, due to P limitation. However, they also both simulated a 498 

relatively small eCa effect on WUE (Table 1; De Kauwe et al., 2013), so transpiration 499 

was not reduced either, leading to little effect on soil moisture content. The model 500 

LPJ-GUESS shows a reduction in soil moisture content, rather than an increase. In 501 

this model, transpiration is largely decoupled from stomatal conductance under non-502 

water stress conditions and hence the eCa-induced reduction in stomatal conductance 503 

does not lead to water savings (Table 1; De Kauwe et al., 2013). Thus, the predicted 504 

increase in LAI in this model was accompanied by a reduction in average soil water 505 

content.  506 

 507 

The differences among models are less obvious in the summer of the driest year 508 

(Figure 6b). None of the models show large soil water savings, which is because soil 509 

water differences are transient; in a dry year, soil moisture is still depleted, albeit at a 510 

slower rate. Similarly, no models show large increases in LAI, largely because of 511 

shifts in allocation from leaves to roots during periods of water stress.  512 

 513 

This wide range of potential feedbacks leads to considerable variation in model 514 

predictions of the interaction between eCa and rainfall. In Figure 7 we examine 515 

whether or not the models predicted a higher eCa response in years of low rainfall. 516 

Five of the seven models showed a trend of decreasing GPP response with increasing 517 

rainfall. However, this only translated to a trend of decreasing NPP response with 518 

increasing rainfall in two of the seven models, due to lagged responses of respiration 519 

and LAI to changes in GPP, as well as feedbacks via soil nutrient availability. For 520 

example, O-CN showed a negative relationship between GPP response and annual 521 

rainfall, but showed the strongest NPP response in the wettest year. This reversal is 522 

related to soil water impacts on N mineralisation, which allowed an NPP response in 523 

wet years but not in dry years.  524 

 525 

Although most models did not predict an interaction between eCa and rainfall in their 526 

effects on NPP, they did predict that eCa could ameliorate the effects of drought, at 527 

least to some degree. Figure 8 shows ambient and elevated Ca GPP and NPP during 528 

the three driest years (2016, 2017, 2019), compared to their values in the fixed climate 529 

simulations.  As noted above, the reductions in ambient Ca range across models from -530 

20 to -70%. For GPP, every model predicted that production under eCa is higher than 531 
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under aCa, while for NPP only the O-CN model predicted that productivity in drought 532 

years would not be increased with eCa. The impact of drought on NPP was 533 

particularly strongly ameliorated by eCa in three models: GDAY, LPJ-GUESS and 534 

SDGVM.    535 

 536 

Consequences for ecosystem C storage 537 

The C budgets for each model over the 12 simulation years are given in Table 2. 538 

Values are given for the fixed climate simulations; similar values are obtained in the 539 

variable climate simulations. Following initial spin-up, the models predicted the plant 540 

C pool to be in the range of 5 kg m
-2
 (CLM4-P) to 25 kg m

-2
 (O-CN), straddling the 541 

best estimate for the site of 12.7 kg m
-2
 (Supplementary S3), while the soil C pool was 542 

in the range of 1.5 kg m
-2
 (LPJ-GUESS) to 8.5 kg m

-2
 (CABLE). Under ambient 543 

conditions, the changes in plant, soil and litter carbon over the 12 years of the 544 

experiment are relatively small fractions of total NPP, which is expected as the 545 

simulations should have been roughly in equilibrium following spin-up. Litterfall 546 

exceeded NPP in the O-CN model; as a result of the strict self-thinning assumptions 547 

in O-CN (Walker et al., 2015), this model predicted net loss of plant C as the tree 548 

stand grew and densified over the 12 years. 549 

 550 

The fraction of the extra NPP due to eCa remaining in the system after 12 years  551 

(Table 2, lower half) varied among models depending on their assumptions about 552 

allocation and turnover (cf. De Kauwe at al. 2014). In CABLE, CLM4 and CLM4-P, 553 

allocation patterns and turnover are assumed fixed during the growing season; all 554 

three models predicted approximately 40% of the extra NPP would remain in the 555 

plants. The four models with variable allocation patterns all predicted an increase in 556 

the fraction of C allocated to wood with elevated Ca (Figure S2). In the three 557 

functional-balance type models (GDAY, LPJ-GUESS, O-CN), this shift occurred 558 

because the alleviation of water stress by eCa outweighed the increase in nutrient 559 

stress, while in SDGVM a smaller foliage allocation is required to reach optimal LAI 560 

under eCa (Figure S2). In LPJ-GUESS and GDAY a shift of allocation towards wood 561 

resulted in 60-70% of the extra NPP remaining in the plants.  The two models 562 

SDGVM and O-CN have contrasting self-thinning assumptions (cf. Walker et al., 563 

2015). In the O-CN model, there was a net loss of carbon from the plant C pool under 564 

eCa despite an overall 7.5% increase in NPP, due to accelerated stand decline. In 565 
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contrast, in the SDGVM model, all of the 16% increase in NPP remained in the plant, 566 

due to a decrease in turnover predicted by this model.  567 

 568 

When additional NPP due to eCa remains in the plant, the stimulation of litterfall and, 569 

consequently, heterotrophic respiration (Rhet), under eCa will be smaller than the 570 

stimulation of NPP. Thus, the only model in which Rhet increased more than NPP was 571 

O-CN, which predicted an increase in Rhet of 9%. The change in Rhet was no more than 572 

6% in the other models. Predicted changes in soil C over time were similarly small; 573 

the maximum predicted change in soil C stock due to eCa was 122 g m
-2
 over the 574 

twelve years of simulation (CLM4).   575 

 576 

DISCUSSION 577 

Large-scale ecosystem experiments like EucFACE, provide a major opportunity to 578 

improve ecosystem models by investigating responses to a perturbation in a situation 579 

where drivers and most responding processes can be directly measured and quantified. 580 

To maximise this opportunity for EucFACE, we took the important step of carrying 581 

out a model intercomparison towards the start of the experiment, rather than at the 582 

end. We had two principal goals for this model intercomparison. Firstly, we aimed to 583 

provide a range of baseline model outputs against which experimental results could be 584 

compared, such as predicted responses of GPP, NPP, LAI, transpiration and soil 585 

respiration to eCa (Figures 2, 3; Table 2). Such baseline model predictions can be used 586 

to help optimize sampling regimes by indicating the likely effect size for key 587 

variables. They also enable competing model assumptions to be evaluated as data 588 

emerge from the experiment (e.g. Duursma et al., 2015; Gimeno et al., 2015). 589 

 590 

Secondly, we aimed to identify key measurements that would allow discrimination 591 

among competing model hypotheses, thus ensuring that the experiment would be able 592 

to address outstanding model uncertainties. Some of the important differences among 593 

models shown in this comparison have been previously documented in model 594 

intercomparisons against the Duke and ORNL Forest FACE experiments, including 595 

differences in the response of transpiration to stomatal conductance (De Kauwe et al., 596 

2013), the flexibility of carbon-nitrogen stoichiometry (Zaehle et al., 2014), and 597 

influences of elevated Ca on allocation patterns (De Kauwe et al., 2014) and woody 598 
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biomass turnover (Walker et al., 2015). These model uncertainties remain key 599 

questions to address in the EucFACE experiment. In addition, our comparison has 600 

highlighted three further critical areas of uncertainty: P limitation, autotrophic 601 

respiration, and drought stress.     602 

 603 

Phosphorus limitation 604 

Of the seven models considered here, one incorporated no stoichiometric nutrient 605 

limitation, four incorporated N limitation, and two incorporated both N and P 606 

limitation. The two models considering P limitation predicted the lowest eCa response 607 

(Figure 3). The strong P-limitation arises in part because the P-cycle is assumed in the 608 

models to be relatively ‘closed’ (Kirschbaum et al., 1998; Wang et al., 2010), 609 

meaning that there are few gains and losses from the system and therefore little 610 

capacity for the vegetation to increase P uptake. However, this assumption may be 611 

incorrect, as there is ample evidence from P-limited ecosystems that incoming C can 612 

enable plants to mineralise or acquire more P (Lambers et al., 2008; 2012; Nazeri et 613 

al., 2013). For example, biochemical mineralization of organic P through phosphatase 614 

activity can be enhanced under eCa through increased production of phosphatase 615 

enzymes, in response to increasing P limitation and increased amounts of fine root 616 

biomass, mycorrhizal fungi and soil microbes. A simple approach of modelling 617 

biochemical mineralization may not be able to accurately capture this feedback 618 

pathway.  Also, it has been suggested that mycorrhizae play an important role in P 619 

uptake (Bolan, 1991; Cairney et al., 2011). Under eCa, mycorrhizal associations can 620 

be stimulated (Treseder, 2004; Nie et al., 2013). Therefore the models may be 621 

underestimating P uptake under eCa by not including mycorrhizal associations. 622 

Mycorrhizae also represent a potential C sink, unaccounted for in most models 623 

(Fransson, 2012). Another possible pathway for increasing P availability under eCa is 624 

through increased desorption of secondary P minerals, which occurs as a result of 625 

increased SOM and root exudation of carboxylates that compete for sorption sites 626 

with phosphate ions (Lambers et al., 2006). A modelling sensitivity study by Yang et 627 

al. (2014) showed that these processes can significantly affect soil P availability and 628 

determine the extent of P limitation in P-limited ecosystems under eCa.   629 

 630 

In addition, the P-limited models (CABLE, CLM4-P) assumed or simulated limited 631 

flexibility in whole-plant C:P ratios. Flexibility in these ratios would allow increased 632 
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plant C uptake even where there is no increase in P uptake. Unfortunately, little is 633 

known about the flexibility of these ratios under eCa. Furthermore, there is still 634 

considerable debate concerning how P limitations to photosynthesis should be 635 

represented (Reich et al., 2009, Ellsworth et al., 2015). Clearly, measurements related 636 

to P uptake and P use efficiency at EucFACE would be valuable for the further 637 

development and improvement of the models by helping to quantify these important 638 

plant-nutrient feedbacks. 639 

 640 

Autotrophic respiration 641 

The intercomparison also highlighted very different assumptions for the effects of eCa 642 

on autotrophic respirationcarbon use efficiency under nutrient limitation, due to 643 

different assumptions about autotrophic respiration. The GDAY model simply 644 

assumes a constant CUE, meaning that plant respiration varies in direct proportion to 645 

modelled GPP. The LPJ-GUESS model predicts that leaf N concentration should 646 

decline under eCa, leading to a reduction in respiration rates per unit biomass (Ryan et 647 

al., 1991; Reich et al., 2008) and an increase in CUE. In contrast, CABLE and O-CN 648 

assume that excess labile, non-structural C accumulates when the plant is unable to 649 

build new tissue due to nutrient limitation, and this C accumulation, in effect, drives 650 

an increase in tissue respiration rates and a decrease in CUE. All three competing 651 

hypotheses are testable. Targeted measurements of tissue respiration, in conjunction 652 

with tissue N content and tissue carbohydrate content, are needed at EucFACE in 653 

order to distinguish among these hypotheses.  654 

 655 

Previous experiments suggest that respiration rates in plant tissues may correlate 656 

positively with both N and increasing carbohydrate contents in plants grown under 657 

eCa (Tjoelker et al., 1999a), with no change in CUE (Tjoelker et al., 1999b). As yet, 658 

there is little evidence for increased respiration with excess C accumulation as a direct 659 

response to reduced nutrient availability and uptake. Specific rates of respiration in 660 

plant tissues, particularly roots, typically decline with nutrient limitation, owing to 661 

lower respiratory costs from reduced ion uptake, transport and assimilation and 662 

reduced growth demands for adenylates and C skeletons (Lambers et al., 1983; 663 

Amthor, 2000). Engagement of the alternative oxidase pathway could provide a 664 

means to consume C without feedbacks from adenylate cycling, altering the efficiency 665 

of ATP synthesis (Millar et al., 2011), though total respiratory C fluxes would not 666 
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necessarily be expected to change. At the whole-plant scale, increases in proportional 667 

allocation of C to root biomass under nutrient limitations would, in effect, increase 668 

respiratory C losses relative to GPP, reducing CUE (Poorter et al., 1995).  669 

  670 

These observations tend not to support the hypothesis of excess respiration following 671 

carbohydrate build-up. However, it can be argued that this hypothesis is not a plant 672 

physiological hypothesis as such, but rather is a mechanism used in models to deplete 673 

excess carbpm under nutrient limitation, acting as a proxy for carbon never 674 

assimilated, or losses from the plant through other mechanisms such as root 675 

exudation. The use of such proxies in modelling reflects the fact that at a fundamental 676 

level, we do not fully understand, and thus do not know how correctly to model, the 677 

effect of nutrient limitation on the carbon balance of plants. Some of the models 678 

simulate a reduction in photosynthetic C uptake under nutrient limitation, either via an 679 

implausibly large reduction in leaf nutrient content (GDAY) or an unspecified 680 

mechanism of strong photosynthetic down-regulation (CLM4, CLM4-P).  Other 681 

models (CABLE, O-CN) effect nutrient limitation of growth by simulating an 682 

increase in respiration. Both approaches are imperfect solutions to the problem that 683 

the reduction of photosynthesis under low nutrient availability is generally smaller 684 

than the observed reduction in growth (Reich, 2012). At the nutrient-limited 685 

EucFACE site, it will be particularly helpful to construct an ecosystem-scale mass 686 

balance of carbon to enable the models to close the carbon budget through a correct 687 

balance of component fluxes.   688 

 689 

Impacts of low rainfall 690 

Another striking outcome of the comparison was that the models disagreed as much, 691 

if not more, about the effect of low-rainfall years, as about the effect of eCa on 692 

productivity (Figure 4). Intensive ecosystem-scale experiments such as FACE have 693 

previously provided a wide range of insights into ecosystem function well beyond 694 

responses to eCa (Norby & Zak 2011). In the same way, low-rainfall periods at the 695 

EucFACE experiment provide an excellent opportunity to reduce model uncertainty 696 

related to the impacts of drought.  697 

 698 

Our analysis of low-rainfall years showed that the models embed several plausible 699 

alternative hypotheses for effect of drought on plant function (Table 1). However, it 700 
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was striking that there was a limited empirical basis for most of the drought-stress 701 

functions used in the models. The function used in O-CN, for example, can be traced 702 

back to Abramopoulos et al. (1988), who do not refer to experimental data. No source 703 

is given for the functions used in CLM4/CLM4-P (Oleson et al., 2010) or LPJ-704 

GUESS (Sitch et al., 2003). The soil moisture functions employed in both CABLE 705 

and SDGVM can be traced back to work on sunflower by Gollan et al. (1986, 1992). 706 

The shape of the soil moisture function in GDAY is based on work on corn by 707 

Denmead & Shaw (1961), but Landsberg & Waring (1997) state that their parameter 708 

values are chosen without empirical justification. There is a clear opportunity here 709 

and in other experiment-model intercomparisons to improve models by developing 710 

more evidence-based functions for the impact of drought stress (cf. De Kauwe et al., 711 

2015; Smith et al., 2015).  The different drought response functions used in the 712 

models are distinguishable by their predicted time-courses for the progression of 713 

drought (Figure 5). Targeted EucFACE measurements of leaf-scale gas exchange and 714 

whole-tree sapflux, in conjunction with root biomass and time-courses of soil water 715 

content at a range of soil depths would allow us to discriminate among these 716 

competing hypotheses.   717 

 718 

Possible dead-ends 719 

In addition to highlighting processes where experimentation can really help to 720 

constrain models, the model intercomparison also flags some analyses that may not 721 

help to inform models. Firstly, it is common to test for an interaction of drought and 722 

eCa by plotting the ratio of elevated to ambient NPP in a given year against the 723 

rainfall in that year, but the expected positive drought x eCa interaction is often not 724 

found (e.g. Morgan et al., 2004; Nowak et al., 2004; McCarthy et al., 2010). Our 725 

model results (Figure 7) suggest that this analysis is not a good test to identify 726 

interactions between eCa and water availability. The models tested here all 727 

incorporate the standard theory for eCa x drought interactions, but generally do not 728 

show a significant correlation between the eCa effect and rainfall on NPP, due to the 729 

many feedbacks at play. Applying the same analysis to experimentally measured NPP 730 

data, which include random variability and measurement inaccuracy, is very unlikely 731 

to show any interaction.   732 

 733 
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Secondly, we compared predicted change in C storage over the 12-year simulation 734 

period due to eCa, with the estimated initial C storage in each model. The predicted 735 

change in plant C was up to 10% of the initial plant C, a change which should be 736 

detectable. However, the predicted change in total soil C was never above 4% of the 737 

initial soil C, suggesting that changes in total soil C are unlikely to be detectable. It 738 

may be more useful to focus on changes in soil C fractions and isotopic signatures 739 

rather than total soil C (see Hofmockel et al., 2011; Norby & Zak, 2011; Iversen et 740 

al., 2012).  741 

 742 

Good modelling practice 743 

We strongly recommend that model intercomparisons, targeting a range of site-744 

relevant models, be used in advance of large-scale ecosystem experiments to provide 745 

baseline expectations and to indicate key areas of model uncertainty. Some 746 

recommendations for this process can be made based on our experience here.  747 

 748 

First, we requested that models output a large number of variables (>80), including 749 

the meteorological data they used, and all components of the carbon, water, N and P 750 

balances. These outputs were used to check model mass balances: for example, we 751 

checked whether NPP was equal to the sum of growth of all plant components, and 752 

whether the change in soil water content was equal to precipitation less 753 

evapotranspiration, runoff and drainage. These checks were invaluable for identifying 754 

errors in model outputs and ensuring that outputs were consistent across models. Mass 755 

balances ought to be carefully checked as a standard step in all modelling exercises, 756 

not just model intercomparisons.  757 

 758 

Secondly, we recommend that a priori model intercomparisons use an “assumption-759 

centred” approach to analysing the model outputs (Medlyn et al., 2015). This 760 

approach recognises that each model is composed of a large number of assumptions, 761 

and focuses on identifying which model assumptions are chiefly responsible for 762 

differences in model predictions. This approach provides significantly more guidance 763 

for experimentalists than simply comparing summary model outputs, which often 764 

reflect interactions and feedbacks among multiple processes. An assumption-centred 765 

analysis identifies clearly the competing hypotheses and the data needed to test them, 766 

which is a key aim of such intercomparisons.  767 
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 768 

Finally, we plan to revisit these simulations when experimental data become available 769 

for evaluating and improving the models. It is important that we fully document the 770 

simulations now so that we can repeat them with actual meteorological data in the 771 

future. Model code, input parameter files and outputs have been archived, and the site 772 

information document, modelling protocols and mass balance check scripts are 773 

provided as supporting information to this article (S3 – S5). This material will not 774 

only allow us to recreate model runs in future, but should also enable other modelling 775 

groups to apply their models to the EucFACE experiment, which we encourage.  776 
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SUPPORTING INFORMATION CAPTIONS 1031 

S1: Document: Site information and model parameters supplied to modellers.  1032 

 1033 

S2: Figure: Simulated allocation patterns at aCa and changes in allocation due to eCa 1034 

in the variable climate simulations. Values at left are % of NPP used in growth of the 1035 

plant component (afol : foliage; awood: wood; aroot : fine + coarse root; arepro : 1036 

reproduction). Values at right are the change in %NPP allocated to different 1037 

components.  1038 

 1039 

S3: Document: Modelling protocol. 1040 

 1041 

S4: Document: Output protocol. 1042 

 1043 

S5: Document: Additional information, including list of mass balance checks applied 1044 

to model outputs, and location of archived model code, inputs and outputs. 1045 
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TABLES 1046 

Table 1: Summary of key assumptions in models used in this paper. See text for further model details & references.  1047 

Model Nutrient limitation 

mechanism 

Autotrophic respiration Water use efficiency Allocation  Soil moisture content effect 

on gas exchange 

P & N limitation     

CABLE  If N or P uptake is 

insufficient to support 

potential NPP, NPP is 

reduced, and excess C is 

allocated to labile C pool 

Maintenance respiration is 

proportional to biomass, 

plus extra respiration from 

labile carbon pool. Growth 

respiration is proportional 

to leaf tissue N:P ratio  

Stomatal conductance is 

proportional to GPP. 

Moderate coupling of 

transpiration to stomatal 

conductance.  

Fixed allocation β calculated from root-

weighted SWC. Applied to 

g1 and respiration.  

 

CLM4-P If N or P uptake is 

insufficient to support 

potential GPP, GPP is 

reduced 

Proportional to biomass  Stomatal conductance is 

proportional to potential 

(non-nutrient limited) GPP.  

Fixed allocation β calculated from root-

weighted SWP. Applied to 

Vcmax.  

N limitation     

CLM4 If N uptake is insufficient 

to support potential GPP, 

GPP is reduced 

Proportional to biomass  Stomatal conductance is 

proportional to potential 

(non-nutrient limited) GPP.  

Fixed allocation β calculated from root-

weighted SWP. Applied to 

Vcmax.  

GDAY Progressive nitrogen 

limitation: as C uptake 

increases, foliage nitrogen 

content decreases, causing 

50% of total GPP Stomatal conductance is 

proportional to GPP. Strong 

coupling.  

Pipe model for leaf vs stem 

allocation; functional 

balance for leaf vs root 

allocation; constrained by 

β calculated from total 

SWC. Applied to g1, Vcmax 

and Jmax.  
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nitrogen immobilization 

and further reducing N 

availability 

min and max values  

LPJ-GUESS  Progressive nitrogen 

limitation as in GDAY, but 

with lower bound for leaf 

N:C ratio. Wood and root 

N:C vary as well as foliage. 

Proportional to tissue N 

content 

Stomatal conductance is 

proportional to GPP. Weak 

coupling. 

Allocation to roots 

increases with nitrogen and 

water stress   

 

Plant transpiration is the 

minimum of supply and 

demand, where supply is 

the product of plant root-

weighted soil moisture 

availability and maximum 

transpiration rate 

O-CN Progressive nitrogen 

limitation as in GDAY, but 

with lower bound for leaf 

N:C ratio. Wood and root 

N:C vary as well as foliage. 

Proportional to biomass, 

plus extra respiration if low 

N uptake would cause leaf 

N:C to fall below lower 

bound.  

Stomatal conductance is 

proportional to GPP. Strong 

coupling. 

Allocation to roots 

increases with soil moisture 

stress, following a 

functional balance 

approach 

β calculated from root-

weighted SWC. Applied to 

g1 and Vcmax 

No stoichiometric nutrient limitation     

SDGVM Leaf N is a monotonically 

decreasing function of soil 

C. Vcmax and Jmax are a 

function of leaf N. 

Proportional to biomass and 

leaf N 

Stomatal conductance is 

proportional to GPP. Strong 

coupling.  

Leaf biomass optimised 

such that lowest canopy 

layer has zero C balance.  

β calculated from total 

SWC. Applied to g1, Vcmax, 

Jmax and respiration 

 

 1048 
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Table 2: Predicted carbon cycle components for each model, presented as values at aCa and the change between eCa and aCa, for the fixed climate simulations. 1049 

All values are in g C m
-2
, either as a standing amount or a cumulative total over the 12 years of the simulations. Initial values of plant carbon (Cplant), soil 1050 

carbon (Csoil) and litter carbon (Clitter) are the same for both ambient and elevated simulations. Models are ordered according to the change in total NPP with 1051 

elevated Ca. Abbreviations: NPP, Net Primary Productivity; Rhet, Heterotrophic Respiration; NEP, Net Ecosystem Productiovioty.  1052 

 1053 

Ambient Ca 
Initial 

Cplant 

Initial 

Csoil 

Initial 

Clitter 

12-yr 

NPP 
∆Cplant 

12-yr 

Litterfall 
12-yr  Rhet ∆Csoil ∆Clitter 

12-yr 

NEP 

CABLE 12101 8496 1442 10710 742 9969 10133 -92 -71 577 

CLM4-P 5064 3267 627 3800 67 3730 3674 40 15 126 

OCN 24616 7918 3444 10441 -2064 12506 11675 47 784 -1233 

CLM4 10604 8184 1605 7323 -11 7335 7424 -48 -42 -101 

LPJ-GUESS 11418 1573 1999 4348 868 3475 3274 48 121 1073 

GDAY 18088 4392 643 8350 2770 7207 7302 -71 -23 1355 

SDGVM 21211 7732 - 14001 2443 11382 11812 -246 -184 2184 

           

Change with elevated Ca  
12-yr 

NPP 
∆Cplant 

12-yr 

Litterfall 
12-yr Rhet ∆Csoil ∆Clitter 

12-yr 

NEP 

CABLE    55 23 33 39 -1 -6 16 

CLM4-P    104 49 63 59 5 -2 45 

OCN    679 -623 1302 1050 33 219 -371 

CLM4    765 285 480 316 122 42 449 

LPJ-GUESS    1113 682 440 259 60 121 853 

GDAY    1695 1265 431 308 63 59 1387 

SDGVM    1978 2002 21 -86 38 69 2064 

Page 35 of 45 Global Change Biology



 

36 

 

FIGURE CAPTIONS 1054 

Figure 1. (a)Annual precipitation in the fixed and variable climate scenarios. (b) 1055 

Atmospheric CO2 concentrations applied in the ambient and elevated CO2 scenarios. 1056 

Note that years indicate the southern hemisphere growing year, assumed to commence 1057 

1
st
 July. For example, 2012 indicates 1/7/12 – 30/6/13.  1058 

 1059 

Figure 2. Annual ambient Ca values of key model outputs in the fixed climate 1060 

experiment. Green indicates N & P limited models, blue indicates N limited, red 1061 

indicates no stoichiometric nutrient limitation. Abbreviations: GPP, gross primary 1062 

productivity; NPP, net primary production; CUE, carbon use efficiency (=NPP/GPP); 1063 

LAI, leaf area index; E, transpiration; N:C ratio, foliar nitrogen:carbon ratio; Nup, 1064 

nitrogen uptake; Pup, phosphorus uptake. Dashed horizontal lines indicate site 1065 

estimates given to modellers (see Supplementary S1).  1066 

 1067 

Figure 3. Simulated responses of key model outputs to elevated Ca (eCa) in the fixed 1068 

climate experiment. Abbreviations as in Figure 2. 1069 

 1070 

Figure 4. Time series of key model outputs in variable climate experiment, expressed 1071 

as anomalies from outputs in fixed climate experiment. The three low-rainfall years 1072 

are indicated by grey lines. Abbreviations as in Figure 2, plus SWC, soil water 1073 

content.  1074 

 1075 

Figure 5: Reduction in gas exchange (β) with soil moisture content in the fixed 1076 

climate experiment. See Table 1 for explanation of how β was applied in each model.  1077 

 1078 

Figure 6: Summertime (Dec-Feb) average SWC vs. LAI in the (a) wettest and (b) 1079 

driest years. Ambient Ca values are shown as squares, elevated Ca as circles. The 1080 

change from ambient to elevated Ca for each model indicates whether that model 1081 

simulates a decrease in SWC, an increase in LAI, or neither, in response to eCa.  1082 

 1083 

Figure 7: Percentage increase in (a) GPP and (b) NPP as a function of annual rainfall 1084 

in the variable climate simulations. Lines indicate statistically significant regressions 1085 
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(p < 0.05). Note that two very high values (one for CLM4, one for LPJ-GUESS) have 1086 

been clipped from (b), but were included in regressions.  1087 

 1088 

Figure 8: Comparison of drought and eCa effects for the three low-rainfall years, for 1089 

GPP (top row) and NPP (bottom row). Grey points: Ratio of ambient variable (AV) to 1090 

ambient fixed (AF) simulations for that year. Black points: Ratio of elevated variable 1091 

(EV) to ambient fixed (AF) simulations.  1092 

 1093 

 1094 
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Figure 1. (a)Annual precipitation in the fixed and variable climate scenarios. (b) Atmospheric CO2 
concentrations applied in the ambient and elevated CO2 scenarios. Note that years indicate the southern 
hemisphere growing year, assumed to commence 1st July. For example, 2012 indicates 1/7/12 – 30/6/13.  
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Figure 2. Average annual ambient Ca values of key model outputs in the fixed climate experiment. Green 
indicates N & P limited models, blue indicates N limited, red indicates no stoichiometric nutrient limitation. 
Abbreviations: GPP, gross primary productivity; NPP, net primary production; CUE, carbon use efficiency 

(=NPP/GPP); LAI, leaf area index; E, transpiration; N:C ratio, foliar nitrogen:carbon ratio; Nup, nitrogen 
uptake; Pup, phosphorus uptake. Dashed horizontal lines indicate site estimates given to modellers (see 

Supplementary S1).  
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Figure 3. Simulated responses of key model outputs to elevated Ca (eCa) in the fixed climate experiment. 
Abbreviations as in Figure 2.  
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Figure 4. Time series of key model outputs in variable climate experiment, expressed as anomalies from 
outputs in fixed climate experiment. The three low-rainfall years are indicated by grey lines. Abbreviations 

as in Figure 2, plus SWC, soil water content.  
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Figure 5: Reduction in gas exchange (β) with soil moisture content in the fixed climate experiment. See 

Table 1 for explanation of how β was applied in each model.  
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Figure 6: Summertime (Dec-Feb) average SWC vs. LAI in the (a) wettest and (b) driest years. Ambient Ca 
values are shown as squares, elevated Ca as circles. The change from ambient to elevated Ca for each 

model indicates whether that model simulates a decrease in SWC, an increase in LAI, or neither, in response 

to eCa.  
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Figure 7: Percentage increase in (a) GPP and (b) NPP as a function of annual rainfall in the variable climate 
simulations. Lines indicate statistically significant regressions (p < 0.05). Note that two very high values 

(one for CLM4, one for LPJ-GUESS) have been clipped from (b), but were included in regressions.  
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Figure 8: Comparison of drought and eCa effects for the three low-rainfall years, for GPP (top row) and NPP 
(bottom row). Grey points: Ratio of ambient variable (AV) to ambient fixed (AF) simulations for that year. 

Black points: Ratio of elevated variable (EV) to ambient fixed (AF) simulations.  
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