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Abstract
Researchers in soil and ecosystem science, and almost every other field, are being pushed—by funders,
journals, governments, and their peers—to increase transparency and reproducibility of their work. A
key part of this effort is amove towards open data as away tofight post-publication data loss, improve
data and code quality, enable powerfulmeta- and cross-disciplinary analyses, and increase trust in,
and the efficiency of, publicly-funded research.Many scientists however lack experience in, andmay
be unsure of the benefits of,making their data and fully-reproducible analyses publicly available.Here
we describe a recent ‘open experiment’, in whichwe documented every aspect of a soil incubation
online,making all raw data, scripts, diagnostics, final analyses, andmanuscripts available in real time.
We found that using tools such as version control, issue tracking, and open-source statistical software
improved data integrity, accelerated our team’s communication and productivity, and ensured
transparency. There aremany avenues to improve scientific reproducibility and data availability, of
which is this only one example, and it is not an approach suited for every experiment or situation.
Nonetheless, we encourage the communities in our respective fields to consider its advantages, and to
lead rather than followwith respect to scientific reproducibility, transparency, and data availability.

1. Introduction

Science is becoming increasingly collaborative and
data-intensive [1]; in conjunction with revolutions in
Internet-based communication, this has created new
research opportunities across former geographic and
disciplinary barriers. At the same time, many factors
are pushing scientists to increase data access and use
‘best practices’ in dealingwith data and code [2, 3].

Scientific journals are adopting increasingly strin-
gent data access and deposition policies, e.g. those of
Scientific Data3, PLoS One4, and Science5. These poli-
cies generally share common assumptions and goals:
maximizing access to data; encouraging deposition
into structured repositories as opposed to journal sup-
plementary information; and specifying that it is not

acceptable for authors to be solely responsible for
ensuring data access. Funding agencies are moving in
this direction as well, with organizations such as the
US National Science Foundation6 and the UK Well-
come Trust7, along with many others, requiring expli-
cit data management plans, unfettered reasonable
access to primary data, and use of established
repositories.

Finally, growing numbers of scientists are pushing
for open science and data on moral and political
grounds, as well as purely scientific ones, arguing that
it is not acceptable to sequester taxpayer-funded
research behind private publishers’ paywalls [4]. A sec-
ond focus revolves around ensuring reproducibility
[5] and enabling larger synthetic activities. Such ana-
lyses [6] are made possible by the assembly of large,
internally consistent data sets; examples in ecology,
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soil science, and biogeosciences of such databases
include BAAD [7], TRY [8], FLUXNET [9], and SRDB
[10]. Online databases and collaborative tools have
also expanded the abilities of researchers to collabo-
rate across large distances, both improving data access
and facilitating multidisciplinary research partner-
ships [11].

Here we briefly discuss what we see as the primary
arguments for data sharing and openness, and then
describe a recent ‘open experiment’ example.

1.1. Repeatability and reproducibility
Reproducibility of experimental results is at the heart
of science and a requirement for results to be accepted
as factual [12]. Too often, however, sufficient details
and data are not publicly available to even repeat a
study (i.e. perform it again in a comparable manner,
while not expecting exactly the same result). For
example, surveying the 2000–2014 biomedical litera-
ture, Iqbal et al [13] found that none of 441 randomly-
chosen studies provided raw data, and only one
provided full protocols. The issues of reproducibility
and repeatability in ecology (and its many related
fields) have been raised and debated for years [14, 15]
but ecological, soil science, and global change journals
differ widely in their data deposition requirements,
when such requirements exist at all.

As data and code have become increasingly inter-
twined, the availability of the latter has become a fun-
damental problem as well. Specialized modeling
groups have worked to improve reproducibility and
archiving practices [16]. More generally, scientists in
all fields are increasingly building and using software
in their work, though often without strong training in
this area [3]. In addition to open-source data analysis
languages such as R [17], scientific workflow systems
such as Kepler8 or Taverna9 record information about
the data processing, analytical process and decisions,
and statistical analysis. Providing open code does not
magically produce bug-free code, mistake-free ana-
lyses, or instantly better science [18]. But it does
encourage authors to invest the time upfront to clean
up their code, data, and documentation when a paper
is written, rather than deferring this task—often until
key details have been forgotten, if not forever. This
also allows for real-time peer review of both code
and data.

1.2.Data loss
Vines et al [19] published a shocking finding, based on
a survey of 516 biology articles from 2 to 22 years old:
the odds of a data set being available post-publication
fell by 17% each year, and the chances that the contact
author’s email address still worked declined by 7% per
year. Similarly, Reichman et al [20] estimated that less

than 1% of ecological data collected is made available
after publication, and noted, as an example, that much
current and historical data relevant to the 2010 Deep-
water Horizon oil spill are already inaccessible or lost
[20]. In global change ecology, Wolkovich et al [6]
reported that they were able to acquire only ∼10% of
other researchers’ raw data sets in preparation for a
meta-analysis [21].

Data loss hits ecosystem, soil, and global change
ecology particularly hard, as climate changes make
ecological data effectively irreproducible [6]: we can
never remeasure exactly the same system state. This
results in a critical need for syntheses and meta-ana-
lyses [14, 15], which depend on the existence of docu-
mented protocols and (ideally raw) data. A subtler data
loss issue is the ‘file drawer problem’ [22], where
unpublished but potentially valuable data are lost for-
ever. Scientists’ use of strong and consistent data cura-
tion practices [2, 23] can mitigate the problem, but
both our anecdotal experience and quantitative stu-
dies [19] suggest that in the long term, data cannot be
reliably preserved by individual researchers.

This in turns means that the role of established,
structured data and code repositories is critical. These
provide a much-needed improvement on ‘Supple-
mentary Information’ sections accompanying journal
articles, which have become de facto repositories of
data, but often have inconvenient formats (e.g. PDF),
use restrictions, and uncertain long-term availability
[4, 24]. Most journals neither desire nor have the
necessary expertise in data storage and management
[14]. In contrast, the best repositories provide easy
data uploading, immediate assignment of data digital
object identifiers, and long-term stability and avail-
ability. They do not, however, eliminate all risks: for
example, the genomics sciences have a long history of
requiring sequences to be deposited, but there are
multiple repositories of varying curatorial levels, data
quality, and formats [25].

1.3. Institutional and social trust
Finally, there are longer-term issues of trust to
consider—in particular, the public’s trust in science
and science’s trust in people [26]. Both of these have
been weakened by public controversies over particular
issues—most particularly relevant to our fields of
research, climate change [27]. In addition to such
issues of trust in the correctness of science, there is that
of trust in utility of science: why should the public fund
scientists if the latter are not producing demonstrably
replicable and reusable results?Why should politicians
and other stakeholders not push for greater return on
public investment in scientific research, and conclude
thatmore data openness serves this cause [4]?

These reasons have led, at least in part, to govern-
mental efforts to have the results of federally funded
scientific research made available to the public, indus-
try, and across the scientific community [28]. Strong

8
https://kepler-project.org

9
http://taverna.org.uk

2

Environ. Res. Lett. 11 (2016) 084004

http://taverna.org.uk
http://taverna.org.uk


‘open science’ and ‘open data’ movements argue that
the completeness of information provided by open
science is fundamentally beneficial, complementing
and perhaps replacing older systems for establishing
trust within science [26], and between science and the
public. These movements increasingly deny that ‘the
intellectual property rights of publishing (scientists)’
[14] take precedence over all other factors, at least as
far as publicly-funded research is concerned.

2. An open experiment: one example

In early 2015, we planned a laboratory incubation
experiment to characterize the chemical and biological
properties of sub-Arctic, active layer soils subjected to
changes in temperature and moisture. In this experi-
ment, we would measure greenhouse gas fluxes from
soil cores over 100 days, and measure the cores’
physical, chemical, and biological characteristics
under temperature and moisture changes [29]. This
required (i) a multidisciplinary team that was not
located in one time zone; (ii) integrating a variety of
different data; (iii) performing quality control and
diagnostics rapidly, so if e.g. instrument problems
arose we would lose only the minimum amount of
time and data; (iv) tightly integrating data, statistical
analyses, andmanuscript results.

We used GitHub, a web-based Git repository host-
ing service, to store our data, scripts, andmanuscripts.
‘Git’ is a popular, free, and open source version control

software: it tracks all changes (when, what, by whom)
made in a ‘repository’, a collection of folders and files.
Many scientific and other users of Git use the ‘GitHub’
or similar web services, as they offer a wide variety use-
ful additional functionality, particularly for teams or
collaborative projects.

The design of our repository is shown in figure 1,
and the repository itself can be found at https://
github.com/bpbond/cpcrw_incubation. It consists of
a series of scripts that feed their results from one to the
next, starting with raw data and ending with final ana-
lyses,figures, andmanuscripts.

This systemhad a number of characteristics:

• The entire data processing and analytical system is
online and documented. It is written in R [17], an
open-source andwidely used language and environ-
ment for statistical computing and graphics.

• The version control system let us make incremental
changes, work out problems, look at histories (i.e.,
whomadewhat changewhen).

• An issue tracker let us discuss problems, reference
changes in the repository, create to-do lists, and
assign responsibilities.

• An informational webpage provided non-technical
explanations of the experiment and broader project.

• Manuscripts were directly tied into the data system
(seefigure 1), with numerical resultsflowing directly
into e.g. results sections. This meant that changes to

Figure 1.The ‘repository’ containing all code and data of a recent soil incubation experiment (29). From top to bottom: raw data from
a lab analyzer is uploaded; an initial script processes raw data into a standardized, summarized form; a second script looks for
inconsistencies and outliers in the data; a third computes final data products, summaries, statistics, and figures; and afinal one
integrates these products to produce a submission-readymanuscript. (This schematic slightly simplifies the actual repository
structure.)The repository is publicly available at https://github.com/bpbond/cpcrw_incubation, and throughout the experiment
showed real-time updated diagnostics summarizing progress.
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the data (and thus statistical results, etc) propagated
automatically and consistently. Tools such as R
Markdown10 have made this process much easier to
build andmaintain.

• Log files provide an audit trail [15] ofwhat analytical
steps were taken and, critically, the specific versions
used for each unit of software, including the main R
system itself. This is critical as software changes with
time, a potentially large problem in reproducing
previous analyses.

We found a number of advantages to this system:

• The public nature of the repository encouraged us
to flesh out documentation, use clean and clear
coding, and think about the longer-term ramifica-
tions of decisions.

• Real-time diagnostics (figure 2) let the team, our
DOE program managers, and other interested
parties see at a glance the progress of the experiment.

• The issue tracker helped our team—which was not
physically located all in one place—to communi-
cate, discuss, and track ‘issues’ (i.e., problems or
questions that arose).

• Investing the effort to set up a software pipeline
before, not after, the experiment was performed
meant that we could reliably and easily identify and
diagnose problems.

• The real-time collaboration, and the public expo-
sure of all stages inspired us to keep all activities
moving quickly. In this case, it was less than nine
months between sampling soil cores in the Alaskan
forest and submitting two resultingmanuscripts.

• Late changes to the analysis pipeline (for example,
when we identified an incorrect calculation) did not
result in time-consuming and error-prone pasting
of new data values into ourmanuscript.

• Our project and experiment received more expo-
sure and publicity than it otherwise would have.

3. Barriers and caveats

There were thus significant advantages to implement-
ing and using an automated analytical pipeline in an
open repository. It is worth considering in depth,
however, the costs of such an approach, the invest-
ments required, and the barriers encountered.

• More upfront time is required in an open repository
system, as the basic building blocks are assembled
into an automated pipeline that runs from raw data

to diagnostics to final products. While frustrating,
this is generally good: automation makes later
analytical stages much faster (see above), while
openness provides a strong incentive to write clean,
clear code from the beginning, for example, as
opposed to deferring documentation.

• To our knowledge, there is no ‘template’ for an
experimental repository such as the one used here.
This results in unnecessary time spent ‘re-inventing
wheels’, in particular with respect to repository
design decisions. Clear, flexible, and powerful
templates will help scientists take advantage of
repository-based and open science approaches.

• Effective data management in a repository system
takes some programming skills. Basic programming
is becoming an increasingly important part of most
scientists’ training, just as basic statistics has long
been a critical skill. For scientists accustomed to
spreadsheet-based data processing, investment in
new skills and practices, or new partnerships with
skilled programmers, will facilitate more open
analyses.

• Version control (here, theGit software) is critical for
tracking provenance, ensuring robustness, and
efficiently sharing changes. It introduces significant
complexity, however, particularly for any use
beyond the most simple operations. In our experi-
ence, version control software remains too difficult
for most scientists to use effectively11. We urge
software developers to work closely with diverse
science communities to develop more user-friendly
tools.

• Git and GitHub are fundamentally designed for
working with code, not data or long documents.
This situation continues to improve on a technical
level12, but some operations (e.g., storing very large
files; tracking small changes to columnar data;
commenting on words or phrases) remain awkward
or even impossible.

In summary, while tools and platforms such asGit,
GitHub, RStudio, and RMarkdown have drastically
improved the feasibility and accessibility of running an
‘open experiment’, they remain significant hurdles for
many scientists. We applaud efforts to lower the tech-
nical and information hurdles to open science [30].

A number of caveats are also in order. The model
we present here—a public repository updated
throughout the experiment, analysis, and publication
process—is far from perfect. For example, there are a
number of ‘best practices’ of scientific computing [3]
that we did not employ, in particular with respect to
automation. In addition, this approach may not be

10
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11
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E.g., https://github.com/blog/1885-better-word-highlighting-

in-diffs
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Figure 2.Two of themany diagnostic figures that were produced as the incubation experiment proceeded. Top: the number of
replicatemeasurementsmade on each soil core (y), by date ofmeasurement (x); the ‘gap’ at 2015-11-11/12 shows a potential problem
in our data-processing pipeline, related to the instrument’s clock crossingmidnight. Bottom: datamatches betweenmultiplexer valve
number (y) and soil core, by date ofmeasurement (x); gray dots indicate that every valve has been correctlymatchedwith a soil core,
while a red dot would indicate a data entry problemor other error. Awide range of similar diagnostic graphics and statistics let us
quickly identify problems or interesting patterns in the data. All diagnostics were publicly available in real time.
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appropriate for, nor applicable to, all study types, even
in our professional fields of soil, ecosystem, and global
change science; it certainly is not appropriate for sensi-
tive data, e.g. human-subject research.

More generally, by itself transparency does not
guarantee repeatability and reproducibility [18], and it
may raise new concerns about, for example, protecting
scientists from harassment [31]. Nor will open science
by itself fundamentally enhance public trust in sci-
ence, as there are still many social and political chal-
lenges to overcome [26].

Scientists also frequently cite other concerns:
about data sharing, being ‘scooped’, not receiving suf-
ficient credit, and time constraints [6]. The benefits are
not always clear to researchers whomight otherwise be
open to following open-data practices [24, 30]. We
cannot easily dismiss all of these concerns: for exam-
ple, does our community adequately credit researchers
who contribute to global databases that subsequently
produce high-impact papers? Such meta-analyses rely
on the collection of primary data, and it is critical that
field and experimental researchers’ efforts are ade-
quately valued and cited [32].

Finally, we recognize that, in general, our profes-
sional and career incentives do not yet align well with
‘an open research culture’ [33]. That is, scientists do
not receive appropriate credit for datasets relative to
publications, as hiring, promotion and tenure deci-
sions all tend to reward publications, not datasets. The
advent of ‘data descriptor’ articles, in journals such as
Scientific Data, improves but does not solve this
problem.

4. Conclusions

A variety of forces continue to push scientists towards
more transparency in their methods, code, and data,
with the goals of increasing reproducibility, enabling
syntheses and meta-analyses, and improving trust in,
and return from, publicly-funded science. The open
experiment example we highlight here offers instru-
ment-to-final product reproducibility and a very high
level of transparency, although it is only one of a
number of possible models [30]. Elements of this case
study (e.g., the use of issue-tracking or version control
software) might be usefully adopted in isolation, but
we hope the entire experiment will be an example of
individual scientists’ decisions and practices [6] having
a larger impact.We encourage the communities in our
respective fields to consider its advantages, and to lead
rather than follow with respect to scientific reproduci-
bility, transparency, and data availability.
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