BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Impacts of Climate, Pollution, and Land-Use Changes on River Flow
Published: April 23, 2011
Posted: August 23, 2011

River flow has decreased significantly in recent decades, but the causes are not well understood. DOE scientists investigated how climate (temperature and precipitation changes), rising atmospheric CO2 concentrations (independent of effects on climate), increasing anthropogenic nitrogen deposition, and land-use change influenced continental river flow from 1948 to 2004. Nitrogen and CO2 affect vegetation, which alters ground hydrology. The study used the Community Land Model version 4 (CLM4) with a coupled global river routing scheme. Model results were compared to river flow from the world’s 50 largest rivers. Both mean river flow and river flow trends from model predictions were significantly correlated with observed values. Model results show a significant decreasing trend in global river flow and indicate that climate is the dominant factor responsible for the downward trend. Nitrogen deposition and land-use change account for about 5% and 2.5% of the decrease in simulated global scale river flow, respectively, while rising atmospheric CO2 concentration causes an upward trend. However, the relative role of each driving factor is variable across regions in the simulations. For example, the decreasing trend in river flow for the Amazon River basin is primarily explained by CO2, while land-use change accounts for 27% of the downward trend in river flow for the Yangtze River basin. The study suggests that to better understand river flow trends, it is not only necessary to take climate into account, but also to consider atmospheric composition, carbon-nitrogen interaction, and land-use change. This multi-factor approach to the analysis of Earth system response to climate and anthropogenic forcing is particularly important for understanding regional-scale dynamics. Reference: Shi, X., J. Mao, P. E. Thornton, F. M. Hoffman, and W. M. Post. 2011. "The Impact of Climate, CO2, Nitrogen Deposition, and Land-Use Change on Simulated Contemporary Global River Flow," Geophysical Research Letters 38, L08704. DOI: 10.1029/2011GL046773. (Reference link)

Contact: Renu Joseph, SC-23.1, (301) 903-9237, Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)