BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


New Microfluidic Device Enables Characterization of Environmental Microbes
Published: August 21, 2011
Posted: August 05, 2011

Microbes play critical roles in global scale environmental processes such as carbon cycling and the movement and degradation of environmental contaminants at waste sites. Understanding and predicting the roles of particular types of microbes in these processes remains extremely challenging, since over 90% of environmental microbes cannot be grown in the lab and existing approaches do not allow identification of specific cell types or quantification of their abundance. Researchers at Lawrence Berkeley National Laboratory and Sandia National Laboratories have now developed a new microfluidic device called µFlowFISH that enables the high-throughput identification of the types and abundance of microbes from environmental samples. Microbial cells are moved through the chip-mounted device using electrical currents, fluorescently labeled using diagnostic probes, and counted in a flow cytometry chamber. After initial testing with microbes that could be cultured, µFlowFISH was used to analyze microbes in groundwater samples from the DOE Hanford 100H cleanup site, targeting organisms known to be involved in uranium immobilization. Results from the device were in good agreement with more cumbersome and time-intensive techniques, requiring 100-fold less sample and far less time. Coupled to "omics" methods for comprehensive microbial community analysis, µFlowFISH presents a powerful new tool for dissecting microbial community structure and function in a variety of environments. Reference: Peng, L., R. J. Meagher, Y. K. Light, S. Yilmaz, R. Chakraborty, A. P. Arkin, T. C. Hazen, and A. K. Singh. 2011. "Microfluidic Fluorescence In Situ Hybridization and Flow Cytometry (µFlowFISH)," Lab on a Chip 11, 2673-79. DOI: 10.1039/c1lc20151d.

Contact: Joseph Graber, SC-23.2, (301) 903-1239
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Microbes and Communities
  • Research Area: Research Technologies and Methodologies

Division: SC-33.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)