U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Ionizing Radiation Exposure Stimulates Expression of Clusterin
Published: April 04, 2011
Posted: July 15, 2011

What happens when ionizing radiation passes through biological tissues? DOE researchers at the University of Texas Southwestern Medical Center at Dallas and the Indiana University Simon Cancer Center have shown that low doses of ionizing radiation of 10 cGy or less (about 2–3 times the annual exposure limit for DOE workers) stimulates induction of an extracellular protein, secretory clusterin (sCLU), that clears cell debris and increases cell survival in response to damage. sCLU levels are elevated in various tissues after low-dose radiation exposure and are permanently elevated in many early-stage cancers. The researchers also showed, for the first time, that sCLU expression is related to genomic instability induced by low-dose radiation and in cells with spontaneous genomic instability. The hypothesis tested was that normal cells induce sCLU in a transient manner, whereas persistent damage caused by permanent genomic instability leads to constitutive sCLU expression. The scientists found that up regulation of the sCLU signaling cascade may be an important pro-survival response pathway following radiation exposure as well as in response to constitutive damage induced through genetic instability. The results appeared in the advance online publication of the cancer journal, Oncogene. These findings add important clues to our understanding of radiation responses in normal tissues.

Reference: Goetz, E. M., B. Shankar, Y. Zou, J. C. Morales, X. Luo, S. Araki, R. Bachoo, L. D. Mayo, and D. A. Boothman. 2011. "ATM-Dependent IGF-1 Induction Regulates Secretory Clusterin Expression After DNA Damage and in Genetic Instability," Oncogene, advance online publication 4 April 2011; doi: 10.1038/onc.2011.92.

Contact: Noelle Metting, SC-23.2, (301) 903-8309
Topic Areas:

  • Legacy: Low Dose Radiation, Radiobiology

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)