U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Microbial Wires Could Generate Energy or Immobilize Environmental Contaminants
Published: May 23, 2011
Posted: June 22, 2011

A team of researchers from the University of East Anglia and Pacific Northwest National Laboratory have determined, for the first time, the molecular structure of the proteins that enable the bacterium Shewanella oneidensis to transfer an electrical charge. The bacteria survive in oxygen-free environments by constructing small wires that extend through the cell wall and contact minerals—a process called iron respiration or “breathing rocks.” Proteins within these wires pass electrons outward to create an electrical charge. Using resources at the Environmental Molecular Sciences Laboratory (EMSL), including X-ray crystallography, the scientists gained new insights about how these proteins work together to move electrons from the inside to the outside of a cell. Identifying the molecular structure of these proteins is a key step toward potentially using microbes as a source of electricity; for example, by connecting them to electrodes to create microbial fuel cells. Because the bacteria also trap and transform the minerals they contact, the new information could advance the development of microbe-based agents for use in environmental remediation such as cleaning up legacy radioactive waste. EMSL is a Department of Energy national scientific user facility.

Reference: Clarke, T. A., M. J. Edwards, A. J. Gates, A. Hall, G. F. White, J. Bradley, C. Reardon, L. Shi, A. S. Beliaev, M. J. Marshall, Z. Wang, N. J. Watmough, J. Fredrickson, J. Zachara, J. N. Butt, and D. J. Richardson. 2011. "Structure of a Bacterial Cell Surface Decaheme Electron Conduit," Proceedings of the National Academy of Sciences of the United States, DOI 10.1073/pnas.1017200108. (Reference Link)

Contact: Paul E. Bayer, SC-23.1, (301) 903-5324, Paul E. Bayer, SC-23.1, (301) 903-5324
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: DOE Environmental Molecular Sciences Laboratory (EMSL)
  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: Structural Biology Infrastructure

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)