BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


New Physical Constraints on Rainfall Formation
Published: May 12, 2011
Posted: June 17, 2011

The simulation of rain processes in climate models is of crucial importance in determining cloud properties and thus the energy balance of climate models. Many current climate models treat these processes, such as the conditions for conversion of cloudwater to rainwater, as free tuning parameters to adjust cloud properties so that simulated top-of-atmosphere radiative fluxes broadly agree with observations. This empirical tuning has various disadvantages. In particular, there is a lack of explicit physical constraints in the tuning process and the need for retuning at different horizontal resolutions. In this publication, partially funded by DOE, the authors describe a novel method to constrain warm rain processes climate models based on observations. Rainfall formation is linked to cloud and precipitation conditions in a new way that is also independent of model resolution. The method might ultimately help to effectively eliminate these free tuning parameters in climate models. The new method was implemented into the University of Hawaii’s regional climate model iRAM. A series of test integrations were performed at horizontal resolutions ranging from 0.25°x0.25° to 2°x2°. The constrained approach was compared with a conventional approach commonly found in current climate models. Comparisons with an observational climatology of cloud liquid water amount reveal significant improvements, in particular a better consistency between different model resolutions. The study enables improved constraint for determining rain formation in climate models.

Reference: Bennartz, R., A. Lauer, and J. L. Brenguier. 2011. “Scale-Aware Integral Constraints on Autoconversion and Accretion in Regional and Global Climate Models," Geophysical Research Letters 38, L10809. DOI:10.1029/2011GL047618. (Reference link)

Contact: Renu Joseph, SC-23.1, (301) 903-9237, Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)