U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Pollution from China Suppresses Rain over East China Sea
Published: May 12, 2011
Posted: June 17, 2011

Rapid economic growth over the last 30 years in China has led to a significant increase in aerosol loading, which is mainly due to the increased emissions of its precursors such as SO2 and NOx. In this study, partially supported by DOE, the authors show that these changes significantly affect wintertime clouds and precipitation over the East China Sea downwind of major emission sources. Satellite observations show a 50% increase of cloud droplet number concentration from the 1980s to 2005. In the same time period, precipitation frequency reported by voluntary ship observers was reduced from more than 30% to less than 20% of the time. A back trajectory analysis showed the pollution in the investigation area to originate from the Shanghai-Nanjing and Jinan industrial areas. A model sensitivity study was performed, isolating the effects of changes in emissions of the aerosol precursors SO2 and NOx on clouds and precipitation using a state-of-the-art regional model including chemistry and aerosol indirect effects. The model was able to simulate similar changes in cloud droplet number concentration over the East China Sea when the current industrial emissions in China were reduced to the 1980 levels. Modeled changes in precipitation were somewhat smaller than the observed changes but still significant. The study reveals a significant impact of local pollution on precipitation.

Reference: Bennartz, R., J. Fan, J. Rausch, L. R. Leung, and A. K. Heidinger. 2011. “Pollution from China Increases Cloud Droplet Number, Suppresses Rain over the East China Sea,” Geophysical Research Letters 38, L09704. DOI: 10.1029/2011GL047235. (Reference link)

Contact: Renu Joseph, SC-23.1, (301) 903-9237, Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)