U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Comparative Genomics of Social Amoebae
Published: April 25, 2011
Posted: June 16, 2011

D. purpureum. (Photo by Chandra Jack, Rice University)

Found in soils worldwide, slime molds such as Dictyostelium discoideum are perhaps best known by their behavior in the presence or absence of food. When food is plentiful, the social amoeba behave as individuals, but when food is scarce, they come together to form multicellular “fruiting bodies” that look like a flower bud atop a single stalk or foot composed of a fifth of the amoebae that have sacrificed themselves for the group.

Studying social amoebae allows researchers to learn more about multicellularity because these amoebae can exist in both single-cell and multicellular states. From a bioremediation perspective however, slime molds are important candidates in cleaning up sites contaminated with chemicals and radioactive materials.

In a recent paper, researchers from DOE’s Joint Genome Institute and Baylor College offer a second Dictyostelium genome, and compare the 33-million base draft sequence produced using the Sanger platform with the finished genome of the model organism D. discoideum.

Separated by 400 million years of evolution, Dictyostelium purpureum is a close relative of D. discoideum and shares many of the same characteristics. Aside from their food-related behaviors, they also have a highly sophisticated recognition system that allows them to distinguish same-species Dictyostelium from others. The researchers found that the genes involved in sociality evolve more rapidly, probably due to continuous adaptation and counter-adaptation.

Reference: Sucgang, R., et al. 2011. “Comparative Genomics of the Social Amoebae Dictyostelium discoideum and Dictyostelium purpureum,” Genome Biology 12:R20, DOI:10/1186/gb-2011-12-2-r20, reference link

Contact: Dan Drell, SC-23.2, (301) 903-4742, Dan Drell, SC-23.2, (301) 903-4742
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: DOE Joint Genome Institute (JGI)

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)