BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Improving Climate Modeling Utilizing Atmospheric Radiation Measurement (ARM) Data
Published: April 28, 2011
Posted: May 31, 2011

Transpiration is one of the most efficient means of moisture transport from the land surface to the boundary layer. Researchers evaluated the integration of a photosynthesis-based gas-exchange evapotranspiration model within a land surface model for estimating the canopy resistance and transpiration using 18-month simulation data. (Canopy resistance is described as vapor flow through the transpiring crop and evaporating soil surface.) The impact of the photosynthesis-based transpiration approach on canopy resistance, surface fluxes, soil moisture, and soil temperature over different vegetation types was studied using simulated land surface fields containing ARM Southern Great Plains site data, Oklahoma Mesonet station data, 2002 International H2O Project, and Ameriflux observations. Incorporation of the gas-exchange model improves the forecast of surface energy fluxes as well as the associated daily cycle of soil moisture and soil temperature. The analyses suggest that adding a photosynthesis based transpiration scheme such as the gas-exchange model can improve the ability of the land data assimilation system to simulate energy balance evaporation and transpiration under a range of soil and vegetation conditions and will benefit weather and climate land surface hydrology community modeling. Accurately capturing that moisture transport under diverse conditions helps improve capabilities to forecast a range of scenarios and processes such as droughts and regional climate.

Reference: Kumar, A., Chen, F., Niyogi, D., Alfieri, J. G., Ek M., and Mitchell, K. 2011. “Evaluation of a Photosynthesis-Based Canopy Resistance Formulation in the Noah Land-Surface Model,” Boundary-Layer Meteorology 138, 263–284, DOI 10.1007/s10546-010-9559-z.

Contact: Wanda Ferrell, SC-23.1, (301) 903-0043, Rickey Petty, SC-23.1, (301) 903-5548, Ashley Williamson, SC-23.1, (301) 903-3120
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research
  • Facility: DOE ARM User Facility

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)