U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Changing Water Balance in Forests Exposed to Elevated CO2
Published: April 18, 2011
Posted: April 29, 2011

Plants influence ecosystem water balance through responses to environmental conditions, and their sensitivity to climate change could alter the ecohydrology of future forests. DOE scientists at Oak Ridge National Laboratory used a combination of measurements, synthesis of existing literature, and modeling to study the consequences of elevated CO2 on ecohydrologic processes in forests. Data from five of DOE’s free-air CO2 enrichment (FACE) sites reveal that elevated CO2 reduced the passage of water vapor through the stomata, or small pores of the plant, leading to declines in canopy transpiration and water use for three closed-canopy forest sites. At the sweetgum FACE experiment in Oak Ridge, Tennessee, elevated CO2 reduced seasonal transpiration by 10–16%. Model simulations also predicted reduced demand for water in response to elevated CO2. The direct effect of elevated CO2 on forest water balance through reductions in transpiration could be considerable, especially following canopy closure and development of maximal leaf area index. Complementary, indirect effects of elevated CO2 include potential increases in root or leaf litter and soil organic matter, shifts in root distribution and altered patterns of water extraction.

References: Warren, J. M., E. Pötzelsberger, S. D. Wullschleger, P. E. Thornton, H. Hasenauer, and R. J. Norby. 2011. “Ecohydrologic Impact of Reduced Stomatal Conductance in Forests Exposed to Elevated CO2,” Ecohydrology 4, 196–210. DOI: 10.1002/eco.173.

Contact: Mike Kuperberg, SC-23.1, (301) 903-3281, Daniel Stover, SC-23.1, (301) 903-0289
Topic Areas:

  • Research Area: Terrestrial Ecosystem Science
  • Research Area: Carbon Cycle, Nutrient Cycling
  • Research Area: Free Air CO2 Enrichment (FACE)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)