U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Neutron Crystallography Reveals How Carbonic Anhydrases (CAs) Work
Published: March 01, 2011
Posted: April 08, 2011

CAs are a family of enzymes that play an essential role in the metabolism of carbon dioxide by converting it into a carbonate ion and a proton. Because they are very stable and inexpensive, CAs could be used in significant large-scale applications such as carbon sequestration processes and biofuel production. However, little is known about the arrangement of the active site of CAs while they carry out their function, a gap that has impeded design of optimized CAs for these applications. Neutron crystallography experiments at the Los Alamos Neutron Science Center to determine the structure of human carbonic anhydrase II have revealed the orientation of amino acids around the zinc ion in the active site, as well as the unexpected presence of a water molecule bound to the metal ion. This structural information has enabled development of a mechanism to explain the proton transfer process and is being used to re-engineer the enzyme to be pH insensitive and thermally stable for carbon sequestration or biodiesel production.

Reference: Fisher, S. Z., et al. 2010. “Neutron Structure of Human Carbonic Anhydrase II: Implications for Proton Transfer,” Biochemistry 49, 415–21.

Topic Areas:

  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: Biosystems Design
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging
  • Research Area: Structural Biology Infrastructure

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)