U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


X-Ray Diffraction Data Provide First Insights into Key Tuberculosis (TB) Mechanism
Published: March 01, 2011
Posted: April 08, 2011

TB infects a third of the world’s population. One key to the TB bacterium’s survival in human cells is its protein-recycling mechanism. Researchers seek to target this system by understanding the way in which proteins destined for degradation are recognized by the microbe’s proteasome before they enter that complex. A structural study at the National Synchrotron Light Source revealed the portion of the bacterial proteasome that identifies the unwanted protein’s “kiss of death” marker sequence, as well as structures of this sequence as it binds to the proteasome. These structures suggest a mechanism by which coiled, tentacle-like arms protruding from the proteasome identify the death-sentence label, causing a series of protein-folding maneuvers that pull the doomed protein into the degradation chamber. These details may provide highly specific targets for the development of new anti-TB therapies.

Reference: Wang, T., K. H. Darwin, and H. Li. 2010. “Binding-Induced Folding of Prokaryotic Ubiquitin-Like Protein on the Mycobacterium Proteasomal ATPase Targets Substrates for Degradation,” Nature Structural and Molecular Biology 17, 1352–57.

Topic Areas:

  • Research Area: Microbes and Communities
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging
  • Research Area: Structural Biology Infrastructure

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)