U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Climate-Induced Variations in Mean Annual Tropical Cyclone Size in the Atlantic
Published: March 21, 2011
Posted: April 06, 2011

The size of a tropical cyclone (TC) influences its destructive potential because storm surge and inland flooding tend to increase as TC size increases. The ability to understand and predict the destructive potential of future TCs is important to estimate the impact that future changes in hurricane winds and surge will have on electrical infrastructure in the United States. A Texas A&M University team led by DOE scientist Steven Quiring studied the relationship between TC size and various environmental and storm-related characteristics in the Atlantic basin. They developed a series of basin-specific models of TC size (e.g., Caribbean, Gulf of Mexico, and North Atlantic) to account for annual TC size variations between Atlantic sub-basins. The models reveal that maximum tangential wind is the most important variable for explaining variations in mean annual TC size while environmental factors such as sea surface temperature, sea level pressure, and mid-Pacific Niño Region 3.4 play a secondary role in modulating mean annual TC size. Future hurricane risk will be established using a series of models that account for changes in TC frequency, intensity, and size.

Reference: Quiring, S., A. Schumacher, C. Labosier, and L. Zhu. 2011. “Variations in Mean Annual Tropical Cyclone Size in the Atlantic,” Journal of Geophysical Research-Atmospheres, doi:10.1029/2010JD015011.

Contact: Bob Vallario, SC 23.1, (301) 903-5758
Topic Areas:

  • Research Area: Multisector Dynamics (formerly Integrated Assessment)

Division: SC-23.1 Climate and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)