BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Do Soot Particle Effects on Clouds Contribute to Climate Cooling?
Published: March 21, 2011
Posted: April 06, 2011

Soot particles emitted from incomplete combustion of fossil fuels and biofuels warm the atmosphere where they are suspended. However, their contribution to cloud brightening may cause a comparable cooling effect. In a recently published study, partially supported by DOE, six modeling groups performed three soot-reduction experiments and reported the effects on clouds. Pollution particles may contribute a large cooling effect by increasing the number of cloud droplets, which brighten the clouds. In the model experiments, reductions in soot from burning of wood and other biofuels, which are relatively large and hygroscopic particles, usually resulted in cloud reduction and a positive radiative flux (warming effect). However, if the smaller, less hygroscopic, fossil fuel soot was reduced, the clouds actually increased for some of the models due to a resulting shift in the overall aerosol population toward larger and more hygroscopic particles. The study reinforces the complexity and uncertainty of aerosol-climate effects, and reinforces the need for further model experiments and field studies to validate how aerosol species mix and interact with clouds.

Reference: Koch, D., Y. Balkanski, S. E. Bauer, R. C. Easter, S. Ferrachat, S. J. Ghan, C. Hoose, T. Iversen, A. Kirkevåg, J. E. Kristjansson, X. Liu, U. Lohmann, S. Menon, J. Quaas, M. Schulz, Ø. Seland, T. Takemura, and N. Yan. 2011. "Soot Microphysical Effects on Liquid Clouds: A Multi-Model Investigation,"Atmospheric Chemistry and Physics 11, 1051–1064, doi:10.5194/acp-11-1051-2011. (Reference Link)

Contact: Renu Joseph, SC-23.1, (301) 903-9237, Dorothy Koch, SC-23.1, (301) 903-0105
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)