BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


One-Stop “Shopping” for Biofuels: A Breakthrough in Consolidated Bioprocessing
Published: March 07, 2011
Posted: March 17, 2011

In most current biomass-to-biofuel strategies, plant material must be first broken down into its component sugars and then converted to ethanol in a separate step, resulting in a costly and inefficient process. Researchers at the DOE Bioenergy Science Center (BESC) and the University of California, Los Angeles, have now successfully engineered the cellulose-degrading bacterium Clostridium cellulolyticum to convert cellulose directly to isobutanol, a liquid fuel with much higher energy density than ethanol and, unlike ethanol, with the potential to be directly used in current engines. This consolidated bioprocessing (CBP) approach, in which a single organism both deconstructs plant cellulose and converts it to a biofuel in one step, significantly improves overall process efficiency. Until now no single microbe was known to possess the necessary combination of biomass degradation and fuel synthesis properties, and the most promising organisms are extremely challenging to genetically manipulate. This breakthrough thus provides a promising new avenue to engineer similar organisms for single-step conversion of plant biomass to fuels.

Reference: Higashide, W., Y. Li, Y. Yang, and J. C. Liao. 2011. “Metabolic Engineering of Clostridium cellulolyticumfor Isobutanol Production from Cellulose,” Applied and Environmental Microbiology, published online March 4, 2011 (doi:10.1128/AEM.02454-10).

Contact: Joseph Graber, SC-23.2, (301) 903-1239
Topic Areas:

  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biosystems Design

Division: SC-33.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)