U.S. Department of Energy Office of Biological and Environmental Research

Searchable Research Highlights



One-Stop “Shopping” for Biofuels: A Breakthrough in Consolidated Bioprocessing
Published: March 07, 2011
Posted: March 17, 2011

In most current biomass-to-biofuel strategies, plant material must be first broken down into its component sugars and then converted to ethanol in a separate step, resulting in a costly and inefficient process. Researchers at the DOE Bioenergy Science Center (BESC) and the University of California, Los Angeles, have now successfully engineered the cellulose-degrading bacterium Clostridium cellulolyticum to convert cellulose directly to isobutanol, a liquid fuel with much higher energy density than ethanol and, unlike ethanol, with the potential to be directly used in current engines. This consolidated bioprocessing (CBP) approach, in which a single organism both deconstructs plant cellulose and converts it to a biofuel in one step, significantly improves overall process efficiency. Until now no single microbe was known to possess the necessary combination of biomass degradation and fuel synthesis properties, and the most promising organisms are extremely challenging to genetically manipulate. This breakthrough thus provides a promising new avenue to engineer similar organisms for single-step conversion of plant biomass to fuels.

Reference: Higashide, W., Y. Li, Y. Yang, and J. C. Liao. 2011. “Metabolic Engineering of Clostridium cellulolyticumfor Isobutanol Production from Cellulose,” Applied and Environmental Microbiology, published online March 4, 2011 (doi:10.1128/AEM.02454-10).

Contact: Joseph Graber, SC-23.2, (301) 903-1239
Topic Areas:

  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biosystems Design

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 02, 2018
Influence of Hydroclimate Variability on Power System Operations Revealed through Integrated Modeling
Integrated multi-sector modeling shows that variations in water availability associated with El [more...]

Mar 01, 2018
Newly Discovered Bacteria Can Break Down Biomass
The bacteria from ruminants' digestive systems could provide insights for biomass conversion.more...]

Feb 28, 2018

New Technology for Consistently Identifying Proteins from a Dozen Cells


A new platform melding microfluidics and robotics allows more in-depth bioanalysis with fewer c [more...]

Feb 26, 2018
Forest Lichens May Suffer Changes in Production and Range with Future Environmental Warming
Empirical and modeling approaches were used to assess the response of lichens as an indicator spe [more...]

Feb 22, 2018
Soil Microbiome in Arctic Polygonal Tundra Unlocked
Landscape topography structures the soil microbiome in Arctic polygonal tundra. The Sc [more...]