U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Interactions of Bacteria with Uranium in the Environment
Published: November 22, 2010
Posted: January 11, 2011

Uranium in the 6+ oxidation state is quite soluble and can thus move rapidly in uranium-contaminated subsurface environments. In contrast, uranium in the 4+ state is highly insoluble, and is therefore less likely to move the subsurface environment. New research has identified important aspects of how bacteria reduce uranium 6+ to uranium 4+, showing that the latter is produced in a variety of forms, not just in the expected, simple form of uraninite (UO2). The authors of the new study used a variety of techniques at the Stanford Synchrotron Radiation Lightsource (SSRL) to characterize the products of uranium reduction in various microbial cultures, including x-ray absorption spectroscopy (XAS). The XAS experiments showed that many of the uranium 4+ products lacked the spectral peak characteristic of uraninite. Instead, a variety of complex solids involving uranium and phosphate, and in some cases also calcium were identified, as well as solids in which uranium 4+ is bound to the surface of the bacterial biomass. These results will be helpful in modeling the mobility of uranium species at contaminated DOE sites. The research was led by Rizlan Bernier-Latmani of the École Polytechnique Fédérale de Lausanne in Switzerland, and involved scientists at SSRL. It is just published online in Environmental Science & Technology.

Reference: Bernier-Latmani, R., et al. 2010. "Non-uraninite Products of Microbial U(VI) Reduction," Environmental Science & Technology, online November 11, 2010. DOI: 10.1021/es101675a

Contact: Roland F. Hirsch, SC-23.2, (301) 903-9009
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Microbes and Communities
  • Research Area: Structural Biology Infrastructure
  • Research Area: Research Technologies and Methodologies

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)