BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

The Challenge of Redesigning Lignin for Biofuel Applications
Published: November 22, 2010
Posted: January 11, 2011

Secondary cell walls of plants contain lignins that provide rigidity and pathogen resistance to the plant, but hinder breakdown of cell walls during biomass processing. This limits the efficient use of plants as bioenergy feedstocks. Lignins are polymers formed from several different chemical monomers and the nature of these monomers determines the properties of the lignin polymer. Modifying the lignin composition could significantly improve the ease of conversion of biomass to biofuel products, while retaining the critical functions of lignins for the plants growing in the field. Researchers at the DOE Great Lakes Bioenergy Center (GLBRC) have found that by altering two genes in Arabidopsis, a plant often used as a research model, a unique lignin is produced that contains a non-traditional monomer. The altered plant exhibits reduced lignin content, a trait desirable for increasing efficiency of deconstruction, but also shows aberrant growth and development and large metabolic shifts. The GLBRC researchers found evidence for genetic interactions between two lignin biosynthetic pathways. These results are an example of the type of unanticipated effects that will need to be taken into account when designing strategies for genetically engineering plant cell walls for bioenergy applications.

Reference: Vanholme, R., J. Ralph, T. Akiyama, F. Lu, J.R. Pazo, H. Kim, J.H. Christensen, B. Van Reusel, V. Storme, R. De Rycke, A. Rohde, K. Morreel, and W. Boerjan. 2010. "Engineering Traditional Monolignols Out of Lignin by Concomitant F5H1-up- and COMT-down-regulation in Arabidopsis," Plant Journal. doe:10.1111/j.1365-313X.2010.04353.x.

Contact: Cathy Ronning, SC-23.2, (301) 903-9549
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biosystems Design

Division: SC-33.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)