BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


The Challenge of Redesigning Lignin for Biofuel Applications
Published: November 22, 2010
Posted: January 11, 2011

Secondary cell walls of plants contain lignins that provide rigidity and pathogen resistance to the plant, but hinder breakdown of cell walls during biomass processing. This limits the efficient use of plants as bioenergy feedstocks. Lignins are polymers formed from several different chemical monomers and the nature of these monomers determines the properties of the lignin polymer. Modifying the lignin composition could significantly improve the ease of conversion of biomass to biofuel products, while retaining the critical functions of lignins for the plants growing in the field. Researchers at the DOE Great Lakes Bioenergy Center (GLBRC) have found that by altering two genes in Arabidopsis, a plant often used as a research model, a unique lignin is produced that contains a non-traditional monomer. The altered plant exhibits reduced lignin content, a trait desirable for increasing efficiency of deconstruction, but also shows aberrant growth and development and large metabolic shifts. The GLBRC researchers found evidence for genetic interactions between two lignin biosynthetic pathways. These results are an example of the type of unanticipated effects that will need to be taken into account when designing strategies for genetically engineering plant cell walls for bioenergy applications.

Reference: Vanholme, R., J. Ralph, T. Akiyama, F. Lu, J.R. Pazo, H. Kim, J.H. Christensen, B. Van Reusel, V. Storme, R. De Rycke, A. Rohde, K. Morreel, and W. Boerjan. 2010. "Engineering Traditional Monolignols Out of Lignin by Concomitant F5H1-up- and COMT-down-regulation in Arabidopsis," Plant Journal. doe:10.1111/j.1365-313X.2010.04353.x.

Contact: Cathy Ronning, SC-23.2, (301) 903-9549
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biosystems Design

Division: SC-33.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)