U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Predicting Function of Unknown Genes
Published: November 22, 2010
Posted: January 11, 2011

Recent advances in plant genomics have identified many new genes, but many are of unknown function. Experimental determination of the function of individual genes is difficult because gene duplication occurs frequently among plants so large, functionally redundant gene families are common. Researchers at the DOE Joint BioEnergy Institute have used a phylogenetic (evolutionary relatedness) approach to computationally predict the biological function of individual genes within the very large (1,508-member) rice kinase gene family by combining gene expression data from various rice tissues and different experimental conditions with protein interaction data and looking for similarities. Function could be inferred for genes showing similar patterns in diverse tissues and conditions. Certain members of the kinase gene family regulate the responses of plants to a range of stresses such as drought and pathogens, as well as being involved in other signaling cascades. Rice can be used as a model for bioenergy grass crops such as sorghum and switchgrass, thus integration of gene data from these plants could facilitate functional predictions of genes important for bioenergy-relevant traits.

Reference: Jung, K-H., P. Cao, Y-S. Seo, C. Dardick, and P.C. Ronald. 2010. "The Rice Kinase Phylogenomics Database: A Guide for Systematic Analysis of the Rice Kinase Super-family," Trends in Plant Science 15(11), 595-99.

Contact: Cathy Ronning, SC-23.2, (301) 903-9549
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Computational Biology, Bioinformatics, Modeling

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)