BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


A New Mechanism for Microbial Community Metabolism
Published: December 06, 2010
Posted: January 11, 2011

Outside of laboratories, microbial species rarely exist in isolation. Many important environmental processes are actually mediated by complex communities of microbes. In many cases, two or more species have evolved to perform a cooperative metabolic activity that would be energetically unfavorable for either organism acting independently. Research published in the December 3 issue of Science and led by DOE scientist Derek Lovley of the University of Massachusetts, Amherst, describes a new mechanism by which the bacterium Geobacter metallireducens consumes ethanol, an important intermediate compound in oxygen free soils and sediments, in cooperation with a second organism Geobacter sulfureducens. For this reaction to yield energy for either partner, electrons produced from ethanol oxidation must be rapidly consumed. Although it was previously assumed that the first organism uses a hydrogen production mechanism to pass electrons to its partner, the authors have discovered that electrons are instead directly fed to G. sulfureducens via conductive "nanowires" called pili on the cell surface, resulting in much more efficient collaborative growth. These results provide important new clues on the fundamentals used by microbes to mediate important environmental processes such as carbon cycling and contaminant transformation and suggest intriguing new approaches to direct generation of electricity in microbial fuel cell systems.

Reference: Summers, Z.M., H. E. Fogarty, C. Leang, A. E. Franks, N. S. Malvankar, and D. R. Lovley. 2010. "Direct Electron Exchange Within Aggregates of an Evolved Syntrophic Coculture of Anaerobic Bacteria," Science 330:1413-15.

Contact: Dan Drell, SC-23.2, (301) 903-4742
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-33.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)