U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Progress and Prospects for Metabolic Engineering of Microbes for Biofuels Production
Published: December 06, 2010
Posted: January 11, 2011

In a review article in the December 3, 2010, issue of Science, DOE Joint Bioenergy Institute director Jay Keasling discusses advances in metabolic engineering and outlines current efforts to develop economical production of biofuel compounds by microbes. Keasling points to recent improvements in DNA sequencing, bioinformatics, and systems biology approaches as key elements enabling recent breakthroughs in microbial production of high value products such as pharmaceuticals. As petroleum prices continue to rise, engineering microbes to synthesize next generation biofuels compatible with existing engines and infrastructure has become more feasible economically. However, more work is needed to provide low cost starting materials from cellulosic biomass, improve genetic tools that allow introduction of metabolic pathways and control elements into microbial genomes, and develop a broader range of host microbes that can produce tailored biofuel compounds and withstand stresses associated with industrial fuel production. Given the rapid pace of recent progress in these areas, Keasling considers the prospects for economical microbial production of biofuels from renewable resources to be very strong.

Reference: Keasling, J.D. 2010. “Manufacturing Molecules Through Metabolic Engineering,” Science 330:1355-1358.

Contact: Joseph Graber, SC-23.2, (301) 903-1239
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biosystems Design
  • Research Area: Computational Biology, Bioinformatics, Modeling

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)