U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Methane-Oxidizing Bacterium Sequenced at DOE-JGI
Published: November 01, 2010
Posted: November 05, 2010

Methane is one of the most important greenhouse gases, 21 times more potent molecule-for-molecule than carbon dioxide. Methane-oxidizing bacteria (methanotrophs) that are common in terrestrial and marine environments help reduce levels of atmospheric methane. To better understand the bacteria involved in the global methane cycle, the DOE JGI sequenced and annotated the genome of Methylosinus trichosporium OB3b. This microbe has been studied extensively to identify and characterize several key enzymes involved in methane oxidation. For example, one crucial enzyme uses copper to efficiently oxidize methane. Aside from genes involved in methane oxidation, genes involved in nitrogen fixation and ammonia transport were also identified. An improved understanding of microbial methane biochemistry will help characterize the biological components of global climate models. The new results were just published online ahead of print in the Journal of Bacteriology.

Reference: Stein, L.Y., S. Yoon, J.D. Semrau, A.A. DiSpirito, J.C. Murrell, S. Vuilleumier, M.G. Kalyuzhnaya, H.J.M. Op den Camp, F. Bringel, D. Bruce, J.-F Cheng, A. Copeland, L. Goodwin, S. Han, L Hauser, M.S.M. Jetten, A. Lajus, M.L. Land, A. Lapidus, S. Lucas, C. M├ędigue, S. Pitluck, T. Woyke, A. Zeytun, and M.G. Klotzl. "Genome sequence of the obligate methanotroph, Methylosinus trichosporium strain OB3b," Journal of Bacteriology doi:10.1128/JB.01144-10. Published online ahead of print on 15 October 2010.

Contact: Dan Drell, SC-23.2, (301) 903-4742
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: DOE Joint Genome Institute (JGI)

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)