U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Sneak Peak at How Stressed Plants Mobilize the Resources
Published: November 01, 2010
Posted: November 05, 2010

The ability of plants to withstand stresses depends on a coordinated chain of events from the molecular level to the whole plant. Our ability to effectively develop plants as sustainable feedstocks for biofuels requires that we understand the impacts of these stresses. DOE-funded researchers at Brookhaven National Laboratory and Tufts University have shown that plants re-allocate a significant portion of their below-ground nitrogen resources when defense mechanisms are triggered in response to herbivory (being eaten or under attack). Using a combination of short-lived PET (positron emission tomography) radioisotopes, including carbon-11 and nitrogen-13, administered to leaves of intact tomato plants, they were able to "see" the movement of sugars and amino acids away from the simulated attack sites. The results argue for strong physiological adaptive responses by plants as a tolerance defense mechanism. This research has important implications for bioenergy feedstock development since the next generation of plant feedstocks will need to withstand many environmental challenges including drought, limited nutrients and disease. Modifying plants with the right defense traits could improve the robustness of future feedstocks. The research is reported in the November issue of New Phytologist, along with a commentary on the significance of the new findings.

References:

Gómez, S., R.A. Ferrieri, M. Schueller, and C. M. Orians. 2010. "Methyl Jasmonate Elicits Rapid Changes in Carbon and Nitrogen Dynamics in Tomato" New Phytologist 188, 835-44.

Anten, N.P.R., and R. Pierik. 2010. "Moving Resources Away From the Herbivore: Regulation and Adaptive Significance," New Phytologist 188, 643-45.

Contact: Prem Srivastava, SC-23.2, (301) 903-4071
Topic Areas:

  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Legacy: Radiochemistry and Instrumentation

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)