U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


New Method Allows Genetic Manipulation of Cellulose Degrading Clostridia
Published: September 20, 2010
Posted: November 03, 2010

To be most useful for biofuel production, microbes need to have useful biochemical properties and be manipulable genetically. The cellulose degrading bacterium Clostridium thermocellum, while a promising candidate for consolidated bioprocessing approaches to biofuel production, has significant genetic manipulation challenges that have limited understanding of its mechanisms of biomass deconstruction. Researchers at DOE's Bioenergy Science Center (BESC) now report a new method for genetic modification of C. thermocellum in the Proceedings of the National Academy of Sciences. This new method enabled the construction of a mutant lacking the gene for one of the organism's major cellulase enzymes, Cel48S. The mutant depolymerizes crystalline cellulose 80% slower than the parent strain but, given sufficient time, it is still capable of complete cellulose degradation. This finding demonstrates that although Cel48S plays a major role in cellulose degradation, other less understood enzymes also contribute to this process and require further study. This result represents an important step forward in our ability to engineer this organism for bioenergy applications.

Reference: Olson, D. G. et al. 2010. "Deletion of the Cel48S Cellulase from Clostridium thermocellum," PNAS doi/pnas.1003584107

Contact: Joseph Graber, SC-23.2, (301) 903-1239
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biosystems Design

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)