U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

GeoChip 3.0 Improves Analysis of Microbial Community Function
Published: September 20, 2010
Posted: November 03, 2010

Microbial communities perform a central role in mediating ecosystem biogeochemical cycles and transforming environmental contaminants. However, examining the functional properties of these communities and how they respond to changing conditions is a challenge. The GeoChip, a chip containing an array of molecular probes, enables scientists to efficiently analyze many DNA samples from environments of interest for genes involved in key functional processes including biomass breakdown, nitrogen use, organic contaminant degradation, and metal resistance. A new version of the chip, GeoChip 3.0, is now available that features twice the number of functional gene families, improved analytical tools and software, and a greatly increased capability to trace functional properties to specific community members. This new tool provides enhanced capabilities for understanding the functional processes of environmental microbes and monitoring their response to changing variables. The GeoChip was developed by a collaborative team of investigators at the University of Oklahoma and Lawrence Berkeley National Laboratory. The original version won an R&D 100 award.

Reference: He, Z. et al. 2010. "GeoChip 3.0 as a High-Throughput Tool for Analyzing Microbial Community Composition, Structure, and Functional Activity," ISME Journal: 4: 1167-1179.

Contact: Joseph Graber, SC-23.2, (301) 903-1239
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)