BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Improved Prediction of Intense Rainfall Events at Fine Spatial Resolution
Published: October 04, 2010
Posted: November 03, 2010

DOE-funded scientists at LLNL studied the ability of the Community Atmospheric Model version 4 (CAM4) to simulate tropical rainfall at several resolutions - 2°, 1°, 0.5°, and 0.25° latitude-longitude - for a region encompassing the Tropical Warm Pool - International Cloud Experiment (TWP-ICE). The differences between the spatial pattern of observations and those predicted by models are unchanged over all resolutions. However, there was a substantial improvement in model predictions on daily time scales at the finest resolution. The circulations and land-sea breeze resolution over the Maritime continent are more realistically captured by the 0.25° simulation. Similarly, the prediction of very intense rainfall events and of little or no precipitation is also improved at higher resolution. Capturing the correct intensity of rainfall events will enable better prediction of extreme events that will become particularly important under climate change. These results also demonstrate that increasing the resolution of models can increase the accuracy of model predictions for climate events that occur on shorter time scales.

Reference: Boyle, J., and S. A. Klein. 2010. "Impact of Horizontal Resolution on Climate Model Forecasts of Tropical Precipitation and Diabatic Heating for the TWP-ICE Period," Journal of Geophysical Research, 115, D23113. DOI: 10.1029/2010JD014262. (Reference link)

Contact: Kiran Alapaty, SC-23.1, (301) 903-3175, Renu Joseph, SC-23.1, (301) 903-9237
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling

Division: SC-33.1 Earth and Environmental Sciences Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)