BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Human Metabolic Disease Leads to New Understanding of Oil Accumulation in Plants
Published: October 25, 2010
Posted: November 03, 2010

A major challenge in developing plants for biofuels production is the difficulty involved in breaking down lignocellulosic material, the main constituent of plant biomass. An alternate approach to biofuel production in plants would involve engineering plants to accumulate larger amounts of lipids (the precursors of oils normally found in seeds) in vegetative tissues such as leaves. Lipids and oils could then be directly harvested for biodiesel or converted to other biofuels. DOE researchers at the University of North Texas recently identified a gene in the model plant Arabidopsis thaliana that is surprisingly similar to a gene known to be involved in Chanarin-Dorfman syndrome, a human metabolic disorder that results in excessive production of lipids in non-fatty tissues. When this gene was disrupted in Arabidopsis, plants had a 10-fold increase in total lipid content in vegetative plant tissue although the plants appeared to grow normally. Lipid levels in seeds were unchanged. These results suggest a surprising degree of similarity of lipid metabolism between plants and animals. Although Arabidopsis is unlikely to be developed as a bioenergy feedstock, this represents a major advance in understanding of oil synthesis in plants and presents promising new targets for metabolic engineering of biomass crops.

Reference: James, C.N., P. J. Horn, C. R. Case, S. K. Gidd, D. Zhang, R. T. Mullen, J. M. Dyer, R. G. W. Anderson, and K. D. Chapman. 2010 "Disruption of the Arabidopsis CGI-58 homologue produces Chanarin–Dorfman-like lipid droplet accumulation in plants," Proc. of the Natl. Acad. Sci. 107:17833-17838.

Contact: Joseph Graber, SC-23.2, (301) 903-1239
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: Biosystems Design

Division: SC-33.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Jan 11, 2022
No Honor Among Copper Thieves
Findings provide a novel means to manipulate methanotrophs for a variety of environmental and in [more...]

Dec 06, 2021
New Genome Editing Tools Can Edit Within Microbial Communities
Two new technologies allow scientists to edit specific species and genes within complex laborato [more...]

Oct 27, 2021
Fungal Recyclers: Fungi Reuse Fire-Altered Organic Matter
Degrading pyrogenic (fire-affected) organic matter is an important ecosystem function of fungi i [more...]

Oct 19, 2021
Microbes Offer a Glimpse into the Future of Climate Change
Scientists identify key features in microbes that predict how warming affects carbon dioxide emi [more...]

Aug 25, 2021
Assessing the Production Cost and Carbon Footprint of a Promising Aviation Biofuel
Biomass-derived DMCO has the potential to serve as a low-carbon, high-performance jet fuel blend [more...]

List all highlights (possible long download time)