U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Chemical Process Produces Simple, Fermentable Sugars from Raw Biomass
Published: July 29, 2010
Posted: October 01, 2010

A GLBRC research team has developed a promising new chemical method to liberate the sugar molecules trapped inside inedible plant biomass, a key step in the creation of cellulosic biofuels. The new chemical process combines ionic liquids and dilute acid to degrade cellulosic biomass without the use of cellulases. In this approach, ionic liquids make cell-wall polysaccharides accessible to chemical reactions by decrystallizing lignocellulosic biomass and dissolving cellulose. Then, dilute hydrochloric acid at 105°C is used to hydrolyze cellulose and hemicellulose into individual sugar subunits. Applying this process to pure cellulose resulted in nearly 90% yield of glucose, and applying it to raw corn stover achieved sugar yields of 70% to 80%. By adding the right balance of water to the mixture, the researchers reduced the formation of unwanted by-products and demonstrated significant improvement in fermentable sugar yields from ionic liquid treatment of lignocelluloses with yields comparable to those of enzymatic hydrolysis. Ionexclusion chromatography was used to separate sugars from the reaction mixture and recover the ionic liquids for reuse. Sugars recovered from the hydrolyzed stover were readily converted to ethanol by Escherichia coli and the yeast Pichia stipitis.

Reference: This research was reported in Binder, J. B., and R. T. Raines. 2010. "Fermentable Sugars by Chemical Hydrolysis of Biomass," Proceedings of the National Academy of Sciences 107, 4516-21.

Contact: John Houghton, SC-23.2, (301) 903-8288
Topic Areas:

  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Research Technologies and Methodologies

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)