U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

New Modeling Tool Combines Environmental and Economic Analysis of the Biorefinery in Agricultural Landscapes
Published: July 29, 2010
Posted: October 01, 2010

GLBRC researchers have provided a direct simulation of different biorefinery configurations in realistic agricultural landscapes for diverse locations throughout the United States. Since no full-scale commercial examples of a cellulosic biorefinery yet exist, forecasting the risks and tradeoffs of the complete biofuel production chain requires the use of modeling tools. Developed at GLBRC, the Biorefinery and Farm Integration Tool (BFIT) enables a combined modeling approach, including both crop and animal production, for analyzing potential economic profitability as well as environmental impacts. Focusing on ethanol production from the two largest anticipated sources of cellulosic biomass—corn stover and switchgrass—BFIT simulated the farm-biorefinery interactions for nine different agricultural regions using county-specific data for soil, weather, and farm practice patterns. In all cases, cellulosic biofuel production was integrated into existing farmlands. Results from the simulated scenarios include projections for land area requirements, annual farm income, nitrogen loss, greenhouse gas emissions, total project investment, and minimum ethanol selling price. Based on these projections, GLBRC researchers show that introducing the cellulosic biorefinery and associated markets could improve farm economics and reduce emissions without additional clearing of lands for biofuels.

Reference: BFIT research results are reported in Sendich, E. D., and B. E. Dale. 2009. “Environmental and Economic Analysis of the Fully Integrated Biorefinery,” GCB Bioenergy 1, 331–45.

Contact: John Houghton, SC-23.2, (301) 903-8288
Topic Areas:

  • Research Area: Multisector Dynamics (formerly Integrated Assessment)
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)