U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Alterations in Poplar Lignin Could Enhance Pretreatment Efficiency
Published: July 29, 2010
Posted: October 01, 2010

Alterations in lignin content or structure in plant cell walls can have a profound effect on chemical or enzymatic degradability and the efficiency by which certain pretreatment methods remove lignin from polysaccharides. GLBRC researchers found that overexpression of a particular gene [ferulate 5-hydroxylase (F5H)] in the lignin biosynthetic pathway of a hybrid poplar created lignin with a structure and composition that can enhance lignin removal from cellulose, while still maintaining normal growth and development. When compared to wild-type poplar, the up-regulated F5H poplar has a much simpler lignin structure that is less branched and more homogeneous in its subunit composition, which makes the lignin easier to separate from cellulose during pretreatment. This and other poplar transgenic materials under investigation by GLBRC researchers have cell walls that release more sugar than wild-type poplar over a range of pretreatment methods. Ongoing work is examining the effect of ammonia fiber expansion pretreatment on these transgenic poplars.

Reference: Details on the lignin structure of F5H up-regulated poplar were reported in Stewart, J. J., et al. 2009. "The Effects on Lignin Structure of Overexpression of Ferulate 5-Hydroxylase in Hybrid Poplar," Plant Physiology 150(2), 621-35.

Contact: John Houghton, SC-23.2, (301) 903-8288, John Houghton, SC-23.2, (301) 903-8288
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biosystems Design
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)