U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Heat-Tolerant Bacteria Efficiently Degrade Non-Pretreated Biomass
Published: July 29, 2010
Posted: October 01, 2010

Presenting the possibility of eliminating the pretreatment step from cellulosic biofuel production, a hot springs bacterium known as Caldicellulosiruptor bescii has shown that it can efficiently degrade crystalline cellulose, xylan (a hemicellulose), and various types of non-pretreated biomass including hardwoods such as poplar, high-lignin grasses such as switchgrass, and low-lignin grasses such as Bermuda grass. With an optimal growth temperature of 75°C, C. bescii was able to break down 65% of switchgrass biomass without pretreatment. This bacterium is the most heat-tolerant biomass degrader known (withstanding temperatures up to 90°C), and it primarily produces hydrogen as an end product when grown on plant biomass. BESC researchers have discovered another hot springs bacterium (Caldicellulosiruptor obsidiansis), isolated from Yellowstone National Park, that thrives at 78°C and can ferment all the simple sugars in cell-wall polysaccharides into diverse products including ethanol. Combining the functional capabilities of C. bescii and C. obsidiansis theoretically could yield organisms that both deconstruct and ferment plant biomass at temperatures above the boiling point of ethanol (78.4°C). Producing ethanol in the vapor phase could greatly reduce the inhibitory effects of ethanol on cell growth.

References: C. bescii (formerly called Anaerocellum thermophilum DSM 6725) findings are from Yang, S. J., et al. 2009. “Efficient Degradation of Lignocellulosic Plant Biomass, Without Pretreatment, by the Thermophilic Anaerobe ‘Anaerocellum thermophilum’ DSM 6725,” Applied and Environmental Microbiology 75(14), 4762–69. The discovery of C. obsidiansis was reported in Hamilton-Brehm, S. D., et al. 2010. “Caldicellulosiruptor obsidiansis sp. nov., an Anaerobic, Extremely Thermophilic, Cellulolytic Bacterium Isolated from Obsidian Pool, Yellowstone National Park,” Applied and Environmental Microbiology 76(4), 1014–20.

Contact: John Houghton, SC-23.2, (301) 903-8288
Topic Areas:

  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)