U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Key Targets from a Complex Family of Lignin Biosynthesis Genes Identified in Switchgrass
Published: July 29, 2010
Posted: October 01, 2010

Although lignin content and composition have been manipulated in several plant species by targeting the monolignol biosynthesis pathway, little is known about the genes and enzymes associated with this pathway in switchgrass. Cinnamoyl CoA reductase (CCR) catalyzes the first step in this pathway dedicated to monolignol synthesis. However, switchgrass contains numerous copies of CCR-like genes, complicating the selection of the best gene targets for altering lignin to reduce cell-wall recalcitrance. By analyzing the RNA of expressed CCR genes, BESC researchers show that one of the expressed genes (PvCCR1) encodes an enzyme actively involved in lignification and thus is a prime target for down-regulation to improve the degradability and sugar yield from switchgrass. Ongoing research is investigating how reducing the expression of the PvCCR1 gene impacts lignin composition and plant structure.

Reference: This research was reported in Escamilla-Treviño, L. L., et al. 2009. “Switchgrass (Panicum virgatum) Possesses a Divergent Family of Cinnamoyl CoA Reductases with Distinct Biochemical Properties,” New Phytologist 185, 143–55.

Contact: John Houghton, SC-23.2, (301) 903-8288
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)