U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Mass Spectrometry-Based Protein Detection Technique Speeds Optimization of Biofuel Protein Levels in Metabolically Engineered Microbes
Published: July 29, 2010
Posted: October 01, 2010

JBEI researchers have developed a mass spectrometry-based protein detection technique called multiple-reaction monitoring (MRM) for identifying microbial proteins that can convert cellulosic sugars into biofuels. With the MRM technique, researchers can detect multiple target proteins in the complex protein mixtures of native cells and rapidly change the specific proteins to be targeted, something not possible with conventional protein detection technology. When coupled to liquid chromatography, MRM analysis offers high selectivity and sensitivity. It eliminates background signal and noise even in the most complex protein mixtures by utilizing two targeted points - a peptide mass and a specific fragment mass generated by mass spectrometry. Since the entire mass range is not scanned and only combinations of peptide and fragment masses are monitored, MRM can be used to detect and quantify up to 10 different proteins in a single liquid chromatography separation.

Reference: The MRM technique is a valuable tool for analyzing enzyme complexes in a variety of JBEI projects such as the synthetic protein scaffold work reported in Dueber, J. E., et al. 2009. "Synthetic Protein Scaffolds Provide Modular Control over Metabolic Flux," Nature Biotechnology 27(8), 753-59.

Contact: John Houghton, SC-23.2, (301) 903-8288
Topic Areas:

  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biosystems Design
  • Research Area: Research Technologies and Methodologies

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)