U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Mass Spectrometry-Based Protein Detection Technique Speeds Optimization of Biofuel Protein Levels in Metabolically Engineered Microbes
Published: July 29, 2010
Posted: October 01, 2010

JBEI researchers have developed a mass spectrometry-based protein detection technique called multiple-reaction monitoring (MRM) for identifying microbial proteins that can convert cellulosic sugars into biofuels. With the MRM technique, researchers can detect multiple target proteins in the complex protein mixtures of native cells and rapidly change the specific proteins to be targeted, something not possible with conventional protein detection technology. When coupled to liquid chromatography, MRM analysis offers high selectivity and sensitivity. It eliminates background signal and noise even in the most complex protein mixtures by utilizing two targeted points - a peptide mass and a specific fragment mass generated by mass spectrometry. Since the entire mass range is not scanned and only combinations of peptide and fragment masses are monitored, MRM can be used to detect and quantify up to 10 different proteins in a single liquid chromatography separation.

Reference: The MRM technique is a valuable tool for analyzing enzyme complexes in a variety of JBEI projects such as the synthetic protein scaffold work reported in Dueber, J. E., et al. 2009. "Synthetic Protein Scaffolds Provide Modular Control over Metabolic Flux," Nature Biotechnology 27(8), 753-59.

Contact: John Houghton, SC-23.2, (301) 903-8288
Topic Areas:

  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biosystems Design
  • Research Area: Research Technologies and Methodologies

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)