U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


New Approach to Visualize Biomass Solubilization During Ionic Liquid Pretreatment
Published: July 29, 2010
Posted: October 01, 2010

JBEI researchers have developed a technique, based on the natural autofluorescence of plant cell walls, that enables the dynamic imaging of biomass solubilization during ionic liquid pretreatment. Using this technique, researchers can accurately and quickly assess the ionic liquid’s performance without the need for labor-intensive and time-consuming chemical and immunological labeling. Working with switchgrass and using the ionic liquid known as 1-n-ethyl-3-methylimidazolium acetate (EmimAc), the researchers observed a rapid swelling of secondary plant cell walls within 10 minutes of exposure at relatively mild pretreatment temperatures (120°C). This reaction indicates a disruption of hydrogen bonding within cellulose and between cellulose and lignin. The swelling was followed by complete dissolution of biomass over 3 hours. By adding water to the solubilized biomass mixture, cellulose can be precipitated out and separated from the lignin, which remains in solution. This recovered cellulose was efficiently hydrolyzed into its sugar components by a commercial cellulase cocktail over a relatively short time interval. Currently, those ionic liquids that are most effective at dissolving plant cell-wall polymers are prohibitively expensive for use on a mass scale. Understanding how ionic liquids are able to dissolve lignocellulosic biomass could pave the way for finding new and better varieties for use in biofuel production.

Reference: This research was reported in Singh, S., B. A. Simmons, and K. P. Vogel. 2009. “Visualization of Biomass Solubilization and Cellulose Regeneration During Ionic Liquid Pretreatment of Switchgrass,” Biotechnology and Bioengineering 104(1), 68–75.

Contact: John Houghton, SC-23.2, (301) 903-8288
Topic Areas:

  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Research Technologies and Methodologies

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)