U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Metagenomics of Globally Important Eukaryotic Phytoplankton
Published: August 23, 2010
Posted: August 31, 2010

Global CO2 fixation is divided equally among terrestrial and marine ecosystems, each accounting for ~50 billion tons of carbon per year. Tiny “pico” phytoplankton are responsible for much of the CO2 capture in marine ecosystems; however, the genomes of only six of these organisms have been sequenced. In a new study published this month in the Proceedings of the National Academy of Sciences(USA)), members of the prymnesiophyte phytoplankton lineage sequenced at the DOE Joint Genome Institute. Because most of these tiny organisms cannot be grown in culture, metagenomic approaches (the study of genetic material recovered directly from environmental samples) were used to analyze cells from subtropical North Atlantic waters. The organisms analyzed have composite genomes with strong evolutionary derivations from different sources. This lineage is thought to be responsible for 25% of the global picophytoplankton biomass whose abundance varies in different biogeographical areas. Changes in ocean temperatures associated with global climate processes could lead to changes in the abundance of these important organisms, with as yet poorly characterized consequences. This study shows the value of culture-independent metagenomic analyses for characterizing the marine microbiome with the potential for exploring its impacts on climate change processes. The research was led by Alexandra Worden at the Monterey Bay Aquarium and Research Institute.

Reference: Cuveliera, M.L. et.al., “Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton” (2010) Proc. Nat. Acad. Sci.(USA) 107, 14679–14684.

Contact: Dan Drell, SC-23.2, (301) 903-4742
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: DOE Joint Genome Institute (JGI)

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)