U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Looking Inside Plant Cell Walls
Published: August 16, 2010
Posted: August 18, 2010

The recalcitrance of plant cell walls to degradation is a major hurdle for the cost effective production of biofuels from biomass. This is further complicated by our inability to characterize plant materials with sufficient spatial resolution to understand the degradation process. Researchers at the DOE Bioenergy Sciences Center (BESC) at Oak Ridge have developed a new imaging system that provides atomic-resolution, non-destructive characterization of the physical properties of biological tissues and other samples. Called Mode-Synthesizing Atomic Force Microscopy, the new system extends traditional Atomic Force Microscopy (AFM) which uses a force-sensing cantilever with a sharp tip to measure the topography and other properties of surfaces. The new technique provides subsurface information otherwise unavailable through AFM and 50nm resolution for imaging plant polymers. This new technique provides access to high resolution plant structure and chemistry within native and pretreated plant cell walls. The technology was developed as an intermediate step toward technology that will enable molecular-level, spectroscopic measurements of plant tissues, and is receiving a 2010 R&D 100 award.

Reference: Tetard L., Passian A., and Thundat T. "New modes for subsurface atomic force microscopy through nanomechanical coupling," Nature Nanotechnology volume 5, pages 105-109 (2010)

Contact: John Houghton, SC-23.2, (301) 903-8288
Topic Areas:

  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)