BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Improving the Representation of Aerosols in Climate Models
Published: August 16, 2010
Posted: August 18, 2010

DOE scientists are developing a method to represent the fine details, termed “sub-grid,” of the variability of aerosols and other trace gas pollutants in climate models. Though sub-grid processes play important roles in Earth’s climate, they have been largely ignored since we do not know how to include them in current coarse grid climate models. The new methodology involves constructing probability density functions within a grid cell of a climate model for major chemically active trace gases and aerosols. The new results imply that spatial variability of pollutant emissions contributes a large share of the sub-grid variability of aerosols. This research is a first step to guide future development of improved aerosol parameterizations in climate models and to accurately quantify aerosol impacts on climate, critical for understanding and predicting future climate change.

Reference: Qian, Y., Gustafson Jr., W. I., and Fast, J. D.: An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling, Atmos. Chem. Phys., 10, 6917-6946, doi:10.5194/acp-10-6917-2010, 2010.

Contact: Kiran Alapaty, SC-23.1, (301) 903-3175, Ashley Williamson, SC-23.1, (301) 903-3120
Topic Areas:

  • Research Area: Earth and Environmental Systems Modeling
  • Research Area: Atmospheric System Research

Division: SC-33.1 Earth and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)