U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Understanding How Plants Make Cell Wall Lignin
Published: August 02, 2010
Posted: August 10, 2010

Plant development is regulated by many complex processes involving both environmental and genetic factors. One of these processes, the phenylpropanoid pathway, is responsible for biosynthesis of the cell wall structural component lignin as well as flavonoids, a diverse set of compounds involved in plant pigmentation and defense. Lignin protects polysaccharides in the plant cell wall from degradation. However, this natural protection also impedes our ability to breakdown biomass for biofuel production. Plants with lower lignin content are smaller overall, i.e., have decreased biomass production, but it has not been clear whether this decrease in plant fitness is due to lignin deficiency or flavonoid accumulation. Researchers at Purdue University studying the model plant Arabidopsis thaliana present evidence linking growth reduction in mutant varieties of Arabidopsis to lignin deficiency. These studies of the phenylpropanoid pathway help define its impacts on biomass production, information of great importance in seeking improved biofuel feedstocks.

Reference: Xu L, Bonawitz ND, Weng J-K, and Chapple C. 2010. “The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids.” Plant Cell 22(5):1620-1632.

Contact: Cathy Ronning, SC-23.2, (301) 903-9549
Topic Areas:

  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-23.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)