U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Third Fungus, First Mushroom, Has its Genome Sequenced
Published: July 12, 2010
Posted: July 28, 2010

Many organisms have enzymes that efficiently degrade cellulosic materials. One such group of organisms is the fungi which break down dead wood and leaf litter in forests. The DOE Joint Genome Institute (JGI) previously sequenced and published the genomes of two wood-decaying fungi. Now a team of researchers led by scientists from the DOE JGI and the University of Utrecht in the Netherlands announce the analysis of a third such genome, the mushroom Schizophyllum commune, in a study published online July 11 in Nature Biotechnology. Found on every continent except Antarctica, S. commune is a white rot fungus that breaks down cellulose and lignin by invading xylem tissue. It is easily grown in the lab and is experimentally tractable, i.e., its genes can be deleted to determine what they do. Researchers studying the 38.5 million base pair genome found more variability in the biomass-degrading enzymes than seen in previously sequenced fungi. They hope this variability will help them understand S. commune’s “unique way of lignin degradation” so that it can be applied to bioenergy production. The DOE JGI is in the process of sequencing over a dozen more wood-decaying fungi and is presently responsible for more than a third of all fungal genomes sequenced or in the queue to be sequenced.

Reference: Ohm, R. A., et al. “Genome sequence of the model mushroom Schizophyllum commune,” Nature Biotechnology published online 11 July 2010; doi:10.1038/nbt.1643

Contact: Dan Drell, SC-23.2, (301) 903-4742
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: DOE Joint Genome Institute (JGI)
  • Research Area: Sustainable Biofuels and Bioproducts

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)