U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Engineering Endoglucanase Enzymes for Higher Thermostability
Published: July 19, 2010
Posted: July 28, 2010

Endoglucanase enzyme complexes break down the internal structure of cellulose, disrupting its crystalline structure and leading to glucose, the desired end product needed for fermentation to ethanol. Like all enzymes, endoglucanases only function within a certain temperature range; however, high temperatures are often part of the biomass breakdown process. Research at DOE's Bioenergy Research Center (BESC) at Oak Ridge is pushing the upper boundary of the temperature range for endoglucanases from the microbe Clostridium phytofermentans. Percival Zhang and colleagues studied directed mutational evolution of mutant proteins from the endoglucanase Cel5A family. They found mutants that are actually more active at 60°C, with the exact activity dependant on the specific cellulose substrate used. These results suggest that there may be a more complex relationship between endoglucanase activity and soluble or solid cellulose substrates then was previously thought. Further research will seek additional improvements of endogluconases for potential application to biofuel production.

Reference: W. Liu, et al., "Engineering of Clostridium phytofermentans Endoglucanase Cel5A for Improved Thermostability," Appl. Environ. Microbiol. 76, 4914-4917 (2010)

Contact: Susan Gregurick, SC-23.2, (301) 903-7672
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)