BER launches Environmental System Science Program. Visit our new website under construction!

U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Understanding D-Xylose Isomerase Using X-rays and Neutrons
Published: June 14, 2010
Posted: June 24, 2010

Converting biomass to fuels on a large scale will require optimizing enzymes that transform breakdown-resistant biomass components into forms that are easy to change into fuel molecules. The enzyme xylose isomerase (XI) is especially important because it can convert sugars that resist bioconversion to fuel into sugars that are readily fermented by, for example, yeasts. A new study led by scientists at Los Alamos National Laboratory (LANL) has shown how the structure around the active site of XI changes as it carries out the conversion. The research used neutron diffraction experiments at the Protein Crystallography Station at the Lujan Center at LANL to map the positioning of individual hydrogen atoms as XI moves them from one carbon to another on the sugar molecule. The research team was able to model how specific amino acids in the XI structure are involved in the movement of the protons. The results may enable new approaches to modifying the enzyme to improve its performance for biofuel and other applications. The new study is published in the June issue of Structure and is featured on the cover of the issue. The research was led by Paul Langan of LANL and included scientists at six other universities and institutes in the United States, France and the United Kingdom.

Reference: A.Y. Kovalevsky, et al., "Metal Ion Roles and the Movement of Hydrogen during Reaction Catalyzed by D-Xylose Isomerase: A Joint X-Ray and Neutron Diffraction Study," Structure 18, 688-699 (2010)

Contact: Roland F. Hirsch, SC-23.2, (301) 903-9009
Topic Areas:

  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging
  • Research Area: Structural Biology Infrastructure

Division: SC-33.2 Biological Systems Science Division, BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Mar 23, 2021
Molecular Connections from Plants to Fungi to Ants
Lipids transfer energy and serve as an inter-kingdom communication tool in leaf-cutter ants&rsqu [more...]

Mar 19, 2021
Microbes Use Ancient Metabolism to Cycle Phosphorus
Microbial cycling of phosphorus through reduction-oxidation reactions is older and more widespre [more...]

Feb 22, 2021
Warming Soil Means Stronger Microbe Networks
Soil warming leads to more complex, larger, and more connected networks of microbes in those soi [more...]

Jan 27, 2021
Labeling the Thale Cress Metabolites
New data pipeline identifies metabolites following heavy isotope labeling.

Analysis [more...]

Aug 31, 2020
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Objectives

  • All plant biomass is sourced from the carbon-fixing enzyme Rub [more...]

List all highlights (possible long download time)