U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Mechanisms of Industrial Stress Tolerance in Biofuel Producing Microbes
Published: June 14, 2010
Posted: June 24, 2010

In industrial biofuels production, complex plant biomass is often initially chemically pretreated to reduce the recalcitrance of lignocellulose to degradation. These processes liberate sugars that can be converted to biofuels by fermentative microbes. However, compounds such as acetic acid that inhibit the growth and productivity of these organisms are also produced. Oak Ridge National Laboratory researchers working at the DOE Bioenergy Science Center (BESC) have used a functional genomics approach to examine acetate tolerance in the biofuel producing bacteria Zymomonas mobilis. These studies have identified a new gene in a selectively evolved Z. mobilis strain whose overexpression results in increased tolerance to acetic acid. Structural characterization of the gene's product suggests that it is membrane protein involved in protecting the interior of the cell from acidic environmental conditions. Similar genes conferring acetic acid tolerance were also identified in the biofuel-producing yeast Saccaromyces cerevisiae. These results provide new targets for continued engineering and improvement of microbes for use in industrial production of cellulosic biofuels.

Reference: S. Yang et al. (2010) "Paradigm for Industrial Strain Improvement Identifies Sodium Acetate Tolerance Loci in Zymomonas mobilis and Saccaromyces cerevisiae," Proceedings of the National Academy of Science (USA) 107 (23) 10395-10400.

Contact: Joseph Graber, SC-23.2, (301) 903-1239
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Plant Systems and Feedstocks, Plant-Microbe Interactions
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)
  • Research Area: Biosystems Design
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)