U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

New Cellulose Degrading Bacteria and Enzymes Isolated From High Temperature Compost
Published: May 24, 2010
Posted: May 28, 2010

Current approaches for conversion of cellulosic biomass to biofuels rely on cocktails of cellulose degrading enzymes (i.e. cellulases) that are expensive, relatively inefficient, and not well adapted to industrial conditions. Researchers at Dartmouth College and the DOE Bioenergy Science Center (BESC) are exploring a variety of high temperature, cellulose rich environments to identify new microbes and enzyme systems with improved biomass deconstruction capabilities. They now report the discovery of genes encoding 48 new cellulase enzymes from microbes collected from a compost site with temperatures ranging from 52-72°C. Many of these genes, most of which originate from members of the bacterial class Clostridia, have substantial sequence variation from known cellulases and may have substantially different properties. In addition to providing promising new targets for developments as industrial biofuels production enzymes, these genes expand the database of cellulase gene sequences and will enable improvement of probes for discovery of additional cellulases in environmental samples.

Reference: J. A. Izquierdo, M. V. Sizova, & L. R. Lynd. 2010 "Diversity of Bacteria and Glycosyl Hydrolase Family 48 Genes in Cellulolytic Consortia Enriched from Thermophilic Biocompost" Applied and Environmental Microbiology 76: 3545-3553

Contact: Joseph Graber, SC-23.2, (301) 903-1239
Topic Areas:

  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: DOE Bioenergy Research Centers (BRC)

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)