U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Mechanism of Microbial Oxidation of Methane
Published: May 10, 2010
Posted: May 26, 2010

Industrial processes to convert methane to other fuel molecules and chemical feedstocks are inefficient, requiring substantial energy inputs. In contrast, methantrophic bacteria efficiently convert methane to methanol, which can then be converted to other fuels and chemicals. This methane to methanol conversion is catalyzed by methane mono-oxygenase (MMO) enzymes. A team led by Timothy Stemmler of Wayne State University and Amy Rosenzweig of Northwestern University used an x-ray spectroscopy station at the Stanford Synchrotron Radiation Lightsource to demonstrate that the active site of MMOs in the methanotroph Methylococcus capsulatus contains two copper atoms. They also showed that the active site is in a soluble domain of the enzyme not the membrane bound component. This resolves long-standing uncertainties about whether the active site contains an iron or a copper atom, and how many metal atoms are in the active site. These results will enable the design of enzyme-based systems for large-scale conversion of methane to other molecules.

Reference: R. Balasubramanian, et al., "Oxidation of methane by a biological dicopper centre", Nature, 465, 115-119 (2010).

Contact: Roland F. Hirsch, SC-23.2, (301) 903-9009
Topic Areas:

  • Research Area: Microbes and Communities
  • Research Area: Sustainable Biofuels and Bioproducts
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging
  • Research Area: Structural Biology Infrastructure
  • Research Area: Research Technologies and Methodologies

Division: SC-23.2 Biological Systems Science Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)