U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights

Unraveling the Microbial Mechanism for Mercury Resistance
Published: May 10, 2010
Posted: May 26, 2010

Some microbes can metabolize inorganic and organic mercury to less toxic forms using the MerR protein. Using small-angle X-ray scattering (SAXS) complemented by molecular dynamics simulations, a scientific team from the Universities of Tennessee, Georgia and California at San Francisco and Oak Ridge National Laboratory determined that when a single mercury ion binds to the MerR protein a structural change is induced. This structural change turns on the DNA transcription machinery for several other proteins and enzymes involved in removing the toxic mercury from the cell. Understanding the mechanism by which the proteins in these microorganisms bind to and metabolize mercury could be useful for identifying biological strategies for removing or transforming mercury in groundwater or soils.

Reference: Guo, H-B., A. Johs, J.M. Parks, L. Olliff, S.M. Miller, A.O. Summers, L. Liang and J.C. Smith. 2010. "Structure and Conformational Dynamics of the Metalloregulator MerR upon Binding of Hg(II)." Journal of Molecular Biology 398: 555-568.

Contact: Paul E. Bayer, SC-23.1, (301) 903-5324
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Structural Biology, Biomolecular Characterization and Imaging
  • Research Area: Structural Biology Infrastructure
  • Research Area: Research Technologies and Methodologies

Division: SC-23.1 Climate and Environmental Sciences Division, BER


BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

Aug 24, 2019
New Approach for Studying How Microbes Influence Their Environment
A diverse group of scientists suggests a common framework and targeting of known microbial processes [more...]

Aug 08, 2019
Nutrient-Hungry Peatland Microbes Reduce Carbon Loss Under Warmer Conditions
Enzyme production in peatlands reduces carbon lost to respiration under future high temperatures. [more...]

Aug 05, 2019
Amazon Forest Response to CO2 Fertilization Dependent on Plant Phosphorus Acquisition
AmazonFACE Model Intercomparison. The Science Plant growth is dependent on the availabi [more...]

Jul 29, 2019
A Slippery Slope: Soil Carbon Destabilization
Carbon gain or loss depends on the balance between competing biological, chemical, and physical reac [more...]

Jul 15, 2019
Field Evaluation of Gas Analyzers for Measuring Ecosystem Fluxes
How gas analyzer type and correction method impact measured fluxes. The Science A side- [more...]

List all highlights (possible long download time)