U.S. Department of Energy Office of Biological and Environmental Research

BER Research Highlights


Stressful Living in Contaminated Groundwater
Published: May 03, 2010
Posted: May 26, 2010

Microorganisms are the primary drivers of key subsurface geochemical processes but we only have limited understanding of the composition and function of the microbial communities involved. "Metagenomic" sequencing is providing insights into the metabolic capabilities of these microbial communities and microbial adaptations to environmental changes. A multi-institutional team from the University of Oklahoma, Oak Ridge and Lawrence Berkeley National Laboratories, and the DOE Joint Genome Institute has now sequenced microbial community DNA isolated from groundwater at a site with low pH and high levels of uranium, technetium, nitrate, and organic solvents. The analysis reveals a significant reduction in microbial diversity from background and an overabundance of genes that confer tolerance for nitrate, heavy metals, and organic solvents. In addition, the overabundance of genes for DNA recombination and repair suggests the presence of lateral gene transfer induced by exposure to extreme environmental conditions. These results expand our understanding of how microbial communities adapt to and influence the fate of environmental contaminants.

Reference: Hemme, C.L., Y. Deng, T.J. Gentry, M.W. Fields, L. Wu, S. Barua, K. Barry, S.G. Tringe, D.B. Watson, Z. He, T.C. Hazen, J.M. Tiedje, E.M. Rubin, and J. Zhou. 2010. "Metagenomic Insights into Evolution of a Heavy Metal-Contaminated Groundwater Microbial Community." ISME Journal 4: 660-672.

Contact: Joseph Graber, SC-23.2, (301) 903-1239, Paul E. Bayer, SC-23.1, (301) 903-5324
Topic Areas:

  • Research Area: Subsurface Biogeochemical Research
  • Research Area: Genomic Analysis and Systems Biology
  • Research Area: Microbes and Communities
  • Research Area: DOE Joint Genome Institute (JGI)

Division: SC-23 BER

 

BER supports basic research and scientific user facilities to advance DOE missions in energy and environment. More about BER

Recent Highlights

May 10, 2019
Quantifying Decision Uncertainty in Water Management via a Coupled Agent-Based Model
Considering risk perception can improve the representation of human decision-making processes in age [more...]

May 09, 2019
Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Scenarios
Study provides country-specific urban area growth models and the first dataset on country-level urba [more...]

May 05, 2019
Calibrating Building Energy Demand Models to Refine Long-Term Energy Planning
A new, flexible calibration approach improved model accuracy in capturing year-to-year changes in bu [more...]

May 03, 2019
Calibration and Uncertainty Analysis of Demeter for Better Downscaling of Global Land Use and Land Cover Projections
Researchers improved the Demeter model’s performance by calibrating key parameters and establi [more...]

Apr 22, 2019
Representation of U.S. Warm Temperature Extremes in Global Climate Model Ensembles
Representation of warm temperature events varies considerably among global climate models, which has [more...]

List all highlights (possible long download time)